When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis . Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [ 1 ]

  3. Machine learning - Wikipedia

    en.wikipedia.org/wiki/Machine_learning

    Embedded machine learning can be achieved through various techniques, such as hardware acceleration, [171] [172] approximate computing, [173] and model optimization. [174] [175] Common optimization techniques include pruning, quantization, knowledge distillation, low-rank factorization, network architecture search, and parameter sharing.

  4. Knowledge graph embedding - Wikipedia

    en.wikipedia.org/wiki/Knowledge_graph_embedding

    The machine learning task for knowledge graph embedding that is more often used to evaluate the embedding accuracy of the models is the link prediction. [1] [3] [5] [6] [7] [18] Rossi et al. [5] produced an extensive benchmark of the models, but also other surveys produces similar results.

  5. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    For many years, sequence modelling and generation was done by using plain recurrent neural networks (RNNs). A well-cited early example was the Elman network (1990). In theory, the information from one token can propagate arbitrarily far down the sequence, but in practice the vanishing-gradient problem leaves the model's state at the end of a long sentence without precise, extractable ...

  6. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    Attention is a machine learning method that determines the relative importance of each component in a sequence relative to the other components in that sequence. In natural language processing , importance is represented by "soft" weights assigned to each word in a sentence.

  7. Large language model - Wikipedia

    en.wikipedia.org/wiki/Large_language_model

    As machine learning algorithms process numbers rather than text, the text must be converted to numbers. In the first step, a vocabulary is decided upon, then integer indices are arbitrarily but uniquely assigned to each vocabulary entry, and finally, an embedding is associated to the integer index.

  8. Sentence embedding - Wikipedia

    en.wikipedia.org/wiki/Sentence_embedding

    Outline of machine learning; ... a sentence embedding is a representation of a sentence as a vector of numbers which encodes meaningful semantic information. [1] [2 ...

  9. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The reasons for successful word embedding learning in the word2vec framework are poorly understood. Goldberg and Levy point out that the word2vec objective function causes words that occur in similar contexts to have similar embeddings (as measured by cosine similarity ) and note that this is in line with J. R. Firth's distributional hypothesis .