Search results
Results From The WOW.Com Content Network
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
Torsion of a square section bar Example of torsion mechanics. In the field of solid mechanics, torsion is the twisting of an object due to an applied torque. [1] [2] Torsion could be defined as strain [3] [4] or angular deformation, [5] and is measured by the angle a chosen section is rotated from its equilibrium position. [6]
In 1820, the French engineer A. Duleau derived analytically that the torsion constant of a beam is identical to the second moment of area normal to the section J zz, which has an exact analytic equation, by assuming that a plane section before twisting remains planar after twisting, and a diameter remains a straight line.
The fiber acts as a very weak torsion spring. If an unknown force is applied at right angles to the ends of the bar, the bar will rotate, twisting the fiber, until it reaches an equilibrium where the twisting force or torque of the fiber balances the applied force. Then the magnitude of the force is proportional to the angle of the bar.
A twist is a screw used to represent the velocity of a rigid body as an angular velocity around an axis and a linear velocity along this axis. All points in the body have the same component of the velocity along the axis, however the greater the distance from the axis the greater the velocity in the plane perpendicular to this axis.
This problem may be overcome by use of a fourth gimbal, actively driven by a motor so as to maintain a large angle between roll and yaw gimbal axes. Another solution is to rotate one or more of the gimbals to an arbitrary position when gimbal lock is detected and thus reset the device. Modern practice is to avoid the use of gimbals entirely.
The specimen is placed on the work table and a notch is created exactly at the centre. The crack should be generated such that the defect length is about half the depth. The load applied on the specimen is generally a three-point bending load. A type of strain gauge called a crack-mouth clip gage is used to measure the crack opening. [3]
Twistronics (from twist and electronics) is the study of how the angle (the twist) between layers of two-dimensional materials can change their electrical properties. [ 1 ] [ 2 ] Materials such as bilayer graphene have been shown to have vastly different electronic behavior, ranging from non-conductive to superconductive , that depends ...