Search results
Results From The WOW.Com Content Network
3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]
There are two representations of quaternions. This article uses the more popular Hamilton. A quaternion has 4 real values: q w (the real part or the scalar part) and q x q y q z (the imaginary part). Defining the norm of the quaternion as follows: ‖ ‖ = + + +
Like rotation matrices, quaternions must sometimes be renormalized due to rounding errors, to make sure that they correspond to valid rotations. The computational cost of renormalizing a quaternion, however, is much less than for normalizing a 3 × 3 matrix. Quaternions also capture the spinorial character of rotations in three dimensions.
This has the convenient implication for 2 × 2 and 3 × 3 rotation matrices that the trace reveals the angle of rotation, θ, in the two-dimensional space (or subspace). For a 2 × 2 matrix the trace is 2 cos θ, and for a 3 × 3 matrix it is 1 + 2 cos θ. In the three-dimensional case, the subspace consists of all vectors perpendicular to the ...
This means that there is a 2:1 homomorphism from quaternions of unit norm to the 3D rotation group SO(3). One can work this homomorphism out explicitly: ...
The rotation has two angles of rotation, one for each plane of rotation, through which points in the planes rotate. If these are ω 1 and ω 2 then all points not in the planes rotate through an angle between ω 1 and ω 2. Rotations in four dimensions about a fixed point have six degrees of freedom.
In other words, the group of unit quaternions with multiplication, modulo the negative sign, is isomorphic to the group of rotations with composition. A rotation in 3D can thus be represented by a quaternion q :
When the initial end point is the identity quaternion, slerp gives a segment of a one-parameter subgroup of both the Lie group of 3D rotations, SO(3), and its universal covering group of unit quaternions, S 3. Slerp gives a straightest and shortest path between its quaternion end points, and maps to a rotation through an angle of 2Ω.