Search results
Results From The WOW.Com Content Network
The block-stacking problem is the following puzzle: Place identical rigid rectangular blocks in a stable stack on a table edge in such a way as to maximize the overhang. Paterson et al. (2007) provide a long list of references on this problem going back to mechanics texts from the middle of the 19th century.
One of the easiest examples to check of a Calabi-Yau manifold is given by the Fermat quintic threefold, which is defined by the vanishing locus of the polynomial = + + + + Computing the partial derivatives of gives the four polynomials = = = = = Since the only points where they vanish is given by the coordinate axes in , the vanishing locus is empty since [::::] is not a point in .
The term "logical line of operation" was rescinded in US Army doctrine by FM 3-0: Operations.It was replaced by the term Line of Effort. [3] The change makes lines of operation, which are now strictly geographic designations, [4] distinct from the conceptual line of effort, which "links multiple tasks and missions using the logic of purpose—cause and effect—to focus efforts toward ...
This result also holds for equations of higher degree. An example of a quintic whose roots cannot be expressed in terms of radicals is x 5 − x + 1 = 0. Numerical approximations of quintics roots can be computed with root-finding algorithms for polynomials. Although some quintics may be solved in terms of radicals, the solution is generally ...
NP-complete special cases include the edge dominating set problem, i.e., the dominating set problem in line graphs. NP-complete variants include the connected dominating set problem and the maximum leaf spanning tree problem. [3]: ND2 Feedback vertex set [2] [3]: GT7 Feedback arc set [2] [3]: GT8 Graph coloring [2] [3]: GT4
The two circles in the Two points, one line problem where the line through P and Q is not parallel to the given line l, can be constructed with compass and straightedge by: Draw the line m through the given points P and Q. The point G is where the lines l and m intersect; Draw circle C that has PQ as diameter. Draw one of the tangents from G to ...
Hilbert's fifth problem is the fifth mathematical problem from the problem list publicized in 1900 by mathematician David Hilbert, and concerns the characterization of Lie groups. The theory of Lie groups describes continuous symmetry in mathematics; its importance there and in theoretical physics (for example quark theory ) grew steadily in ...
An arrangement of nine points (related to the Pappus configuration) forming ten 3-point lines.. In discrete geometry, the original orchard-planting problem (or the tree-planting problem) asks for the maximum number of 3-point lines attainable by a configuration of a specific number of points in the plane.