When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Collineation - Wikipedia

    en.wikipedia.org/wiki/Collineation

    Formally, let V be a vector space over a field K and W a vector space over a field L. Consider the projective spaces PG(V) and PG(W), consisting of the vector lines of V and W. Call D(V) and D(W) the set of subspaces of V and W respectively. A collineation from PG(V) to PG(W) is a map α : D(V) → D(W), such that: α is a bijection.

  3. Collinearity - Wikipedia

    en.wikipedia.org/wiki/Collinearity

    The linear maps (or linear functions) of vector spaces, viewed as geometric maps, map lines to lines; that is, they map collinear point sets to collinear point sets and so, are collineations. In projective geometry these linear mappings are called homographies and are just one type of collineation.

  4. Affine transformation - Wikipedia

    en.wikipedia.org/wiki/Affine_transformation

    Let X be an affine space over a field k, and V be its associated vector space. An affine transformation is a bijection f from X onto itself that is an affine map; this means that a linear map g from V to V is well defined by the equation () = (); here, as usual, the subtraction of two points denotes the free vector from the second point to the first one, and "well-defined" means that ...

  5. Collinearity equation - Wikipedia

    en.wikipedia.org/wiki/Collinearity_equation

    The most obvious use of these equations is for images recorded by a camera. In this case the equation describes transformations from object space (X, Y, Z) to image coordinates (x, y). It forms the basis for the equations used in bundle adjustment. They indicate that the image point (on the sensor plate of the camera), the observed point (on ...

  6. Multicollinearity - Wikipedia

    en.wikipedia.org/wiki/Multicollinearity

    In statistics, multicollinearity or collinearity is a situation where the predictors in a regression model are linearly dependent.. Perfect multicollinearity refers to a situation where the predictive variables have an exact linear relationship.

  7. Arrangement of lines - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_lines

    For instance, the Sylvester–Gallai theorem, stating that any non-collinear set of points in the plane has an ordinary line containing exactly two points, transforms under projective duality to the statement that any projective arrangement of finitely many lines with more than one vertex has an ordinary point, a vertex where only two lines cross.

  8. Ceva's theorem - Wikipedia

    en.wikipedia.org/wiki/Ceva's_theorem

    For example, AF / FB is defined as having positive value when F is between A and B and negative otherwise. Ceva's theorem is a theorem of affine geometry, in the sense that it may be stated and proved without using the concepts of angles, areas, and lengths (except for the ratio of the lengths of two line segments that are collinear).

  9. Cubic function - Wikipedia

    en.wikipedia.org/wiki/Cubic_function

    In mathematics, a cubic function is a function of the form () = + + +, that is, a polynomial function of degree three. In many texts, the coefficients a , b , c , and d are supposed to be real numbers , and the function is considered as a real function that maps real numbers to real numbers or as a complex function that maps complex numbers to ...