Search results
Results From The WOW.Com Content Network
Here is the reason for orthogonality: when the two supporting intervals , and , are not equal, then they are either disjoint, or else the smaller of the two supports, say ,, is contained in the lower or in the upper half of the other interval, on which the function , remains constant. It follows in this case that the product of these two Haar ...
The Legendre polynomials were first introduced in 1782 by Adrien-Marie Legendre [3] as the coefficients in the expansion of the Newtonian potential | ′ | = + ′ ′ = = ′ + (), where r and r′ are the lengths of the vectors x and x′ respectively and γ is the angle between those two vectors.
In mathematics, an orthogonal polynomial sequence is a family of polynomials such that any two different polynomials in the sequence are orthogonal to each other under some inner product. The most widely used orthogonal polynomials are the classical orthogonal polynomials , consisting of the Hermite polynomials , the Laguerre polynomials and ...
In data analysis, cosine similarity is a measure of similarity between two non-zero vectors defined in an inner product space.Cosine similarity is the cosine of the angle between the vectors; that is, it is the dot product of the vectors divided by the product of their lengths.
A contrast is defined as the sum of each group mean multiplied by a coefficient for each group (i.e., a signed number, c j). [10] In equation form, = ¯ + ¯ + + ¯ ¯, where L is the weighted sum of group means, the c j coefficients represent the assigned weights of the means (these must sum to 0 for orthogonal contrasts), and ¯ j represents the group means. [8]
The Clebsch–Gordan coefficients are the coefficients appearing in the expansion of the product of two spherical harmonics in terms of spherical harmonics themselves. A variety of techniques are available for doing essentially the same calculation, including the Wigner 3-jm symbol, the Racah coefficients, and the Slater integrals.
In more mathematical terms, the CG coefficients are used in representation theory, particularly of compact Lie groups, to perform the explicit direct sum decomposition of the tensor product of two irreducible representations (i.e., a reducible representation into irreducible representations, in cases where the numbers and types of irreducible ...
Alternatively, when the inner product of the function being approximated cannot be evaluated, the discrete orthogonality condition gives an often useful result for approximate coefficients: = (+), where δ ij is the Kronecker delta function and the x k are the N Gauss–Chebyshev zeros of T N (x): = ((+)).