When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/List_of_NP-complete_problems

    Variations on the Traveling salesman problem. The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23

  3. NP-completeness - Wikipedia

    en.wikipedia.org/wiki/NP-completeness

    "NP-complete problems are the most difficult known problems." Since NP-complete problems are in NP, their running time is at most exponential. However, some problems have been proven to require more time, for example Presburger arithmetic. Of some problems, it has even been proven that they can never be solved at all, for example the halting ...

  4. P versus NP problem - Wikipedia

    en.wikipedia.org/wiki/P_versus_NP_problem

    However, many important problems are NP-complete, and no fast algorithm for any of them is known. From the definition alone it is unintuitive that NP-complete problems exist; however, a trivial NP-complete problem can be formulated as follows: given a Turing machine M guaranteed to halt in polynomial time, does a polynomial-size input that M ...

  5. NP (complexity) - Wikipedia

    en.wikipedia.org/wiki/NP_(complexity)

    Euler diagram for P, NP, NP-complete, and NP-hard set of problems. Under the assumption that P ≠ NP, the existence of problems within NP but outside both P and NP-complete was established by Ladner. [1] In computational complexity theory, NP (nondeterministic polynomial time) is a complexity class used to classify decision problems.

  6. Karp's 21 NP-complete problems - Wikipedia

    en.wikipedia.org/wiki/Karp's_21_NP-complete_problems

    In computational complexity theory, Karp's 21 NP-complete problems are a set of computational problems which are NP-complete.In his 1972 paper, "Reducibility Among Combinatorial Problems", [1] Richard Karp used Stephen Cook's 1971 theorem that the boolean satisfiability problem is NP-complete [2] (also called the Cook-Levin theorem) to show that there is a polynomial time many-one reduction ...

  7. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    The problem has been shown to be NP-hard (more precisely, it is complete for the complexity class FP NP; see function problem), and the decision problem version ("given the costs and a number x, decide whether there is a round-trip route cheaper than x") is NP-complete. The bottleneck travelling salesman problem is also NP-hard.

  8. NP-hardness - Wikipedia

    en.wikipedia.org/wiki/NP-hardness

    All NP-complete problems are also NP-hard (see List of NP-complete problems). For example, the optimization problem of finding the least-cost cyclic route through all nodes of a weighted graph—commonly known as the travelling salesman problem—is NP-hard. [7]

  9. 3-partition problem - Wikipedia

    en.wikipedia.org/wiki/3-partition_problem

    The 3-partition problem remains NP-complete even when the integers in S are bounded above by a polynomial in n. In other words, the problem remains NP-complete even when representing the numbers in the input instance in unary. i.e., 3-partition is NP-complete in the strong sense or strongly NP-complete. This property, and 3-partition in general ...