Search results
Results From The WOW.Com Content Network
If a 2 + b 2 < c 2, then the triangle is obtuse. Edsger W. Dijkstra has stated this proposition about acute, right, and obtuse triangles in this language: sgn(α + β − γ) = sgn(a 2 + b 2 − c 2), where α is the angle opposite to side a, β is the angle opposite to side b, γ is the angle opposite to side c, and sgn is the sign function. [30]
In an acute triangle, the sum of the circumradius R and the inradius r is less than half the sum of the shortest sides a and b: [4]: p.105, #2690. while the reverse inequality holds for an obtuse triangle. For an acute triangle with medians ma , mb , and mc and circumradius R, we have [4]: p.26, #954.
Let x be a positive integer, there is a method to construct all Pythagorean triples that contain x as one of the legs of the right-angled triangle associated with the triple. It means finding all right triangles whose sides have integer measures, with one leg predetermined as a given cathetus. [13] Formulas read as follows.
The golden ratio is also an algebraic number and even an algebraic integer. It has minimal polynomial. This quadratic polynomial has two roots, and. The golden ratio is also closely related to the polynomial. which has roots and As the root of a quadratic polynomial, the golden ratio is a constructible number.
Solution of triangles. Problem of finding unknown lengths and angles of a triangle. Solution of triangles (Latin: solutio triangulorum) is the main trigonometric problem of finding the characteristics of a triangle (angles and lengths of sides), when some of these are known. The triangle can be located on a plane or on a sphere.
In Euclidean geometry, the base angles can not be obtuse (greater than 90°) or right (equal to 90°) because their measures would sum to at least 180°, the total of all angles in any Euclidean triangle. [8] Since a triangle is obtuse or right if and only if one of its angles is obtuse or right, respectively, an isosceles triangle is obtuse ...
The heptagonal triangle's orthic triangle, with vertices at the feet of the altitudes, is similar to the heptagonal triangle, with similarity ratio 1:2. The heptagonal triangle is the only obtuse triangle that is similar to its orthic triangle (the equilateral triangle being the only acute one). [2]: pp. 12–13
A Heronian triangle is commonly defined as one with integer sides whose area is also an integer. The lengths of the sides of such a triangle form a Heronian triple (a, b, c) for a ≤ b ≤ c. Every Pythagorean triple is a Heronian triple, because at least one of the legs a, b must be even in a Pythagorean triple, so the area ab/2 is an integer.