When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Legendre polynomials - Wikipedia

    en.wikipedia.org/wiki/Legendre_polynomials

    In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections ...

  3. Associated Legendre polynomials - Wikipedia

    en.wikipedia.org/.../Associated_Legendre_polynomials

    In many occasions in physics, associated Legendre polynomials in terms of angles occur where spherical symmetry is involved. The colatitude angle in spherical coordinates is the angle used above. The longitude angle, , appears in a multiplying factor. Together, they make a set of functions called spherical harmonics.

  4. Legendre function - Wikipedia

    en.wikipedia.org/wiki/Legendre_function

    The general Legendre equation reads ″ ′ + [(+)] =, where the numbers λ and μ may be complex, and are called the degree and order of the relevant function, respectively. . The polynomial solutions when λ is an integer (denoted n), and μ = 0 are the Legendre polynomials P n; and when λ is an integer (denoted n), and μ = m is also an integer with | m | < n are the associated Legendre ...

  5. Legendre transformation - Wikipedia

    en.wikipedia.org/wiki/Legendre_transformation

    The function () is defined on the interval [,].For a given , the difference () takes the maximum at ′.Thus, the Legendre transformation of () is () = ′ (′).. In mathematics, the Legendre transformation (or Legendre transform), first introduced by Adrien-Marie Legendre in 1787 when studying the minimal surface problem, [1] is an involutive transformation on real-valued functions that are ...

  6. Gauss–Legendre quadrature - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_quadrature

    Gauss–Legendre quadrature. In numerical analysis, Gauss–Legendre quadrature is a form of Gaussian quadrature for approximating the definite integral of a function. For integrating over the interval [−1, 1], the rule takes the form: where. xi are the roots of the n th Legendre polynomial. This choice of quadrature weights wi and quadrature ...

  7. Orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_polynomials

    The Gegenbauer polynomials form the most important class of Jacobi polynomials; they include the Chebyshev polynomials, and the Legendre polynomials as special cases. The field of orthogonal polynomials developed in the late 19th century from a study of continued fractions by P. L. Chebyshev and was pursued by A. A. Markov and T. J. Stieltjes.

  8. Classical orthogonal polynomials - Wikipedia

    en.wikipedia.org/wiki/Classical_orthogonal...

    The classical orthogonal polynomials arise from a differential equation of the form. where Q is a given quadratic (at most) polynomial, and L is a given linear polynomial. The function f, and the constant λ, are to be found. (Note that it makes sense for such an equation to have a polynomial solution. Each term in the equation is a polynomial ...

  9. Legendre symbol - Wikipedia

    en.wikipedia.org/wiki/Legendre_symbol

    In number theory, the Legendre symbol is a multiplicative function with values 1, −1, 0 that is a quadratic character modulo of an odd prime number p: its value at a (nonzero) quadratic residue mod p is 1 and at a non-quadratic residue (non-residue) is −1. Its value at zero is 0. The Legendre symbol was introduced by Adrien-Marie Legendre ...