Search results
Results From The WOW.Com Content Network
Clockwise from top right: Amoeba proteus, Actinophrys sol, Acanthamoeba sp., Nuclearia thermophila., Euglypha acanthophora, neutrophil ingesting bacteria. An amoeba (/ ə ˈ m iː b ə /; less commonly spelled ameba or amœba; pl.: amoebas (less commonly, amebas) or amoebae (amebae) / ə ˈ m iː b i /), [1] often called an amoeboid, is a type of cell or unicellular organism with the ability ...
An amoeba of the genus Mayorella (Amoebozoa, Discosea) Amoebozoa is a large and diverse group, but certain features are common to many of its members. The amoebozoan cell is typically divided into a granular central mass, called endoplasm, and a clear outer layer, called ectoplasm. During locomotion, the endoplasm flows forwards and the ...
[1] [127] According to the source of their nutrients, they can be divided into autotrophs (producers) and heterotrophs (consumers). Autotrophic protists synthesize their own organic compounds from inorganic substrates through the process of photosynthesis, using light as the source of energy; [128]: 217 accordingly, they are also known as ...
Amoebas (amoeboids) Pseudopods (Greek for false feet) are lobe-like appendages which amoebas use to anchor to a solid surface and pull themselves forward. They can change their shape by extending and retracting these pseudopods. [14] Amoeba: Found in every major protist lineage. Amoeboid cells occur among the protozoans, but also in the algae ...
Amoeba is a genus of single-celled amoeboids in the family Amoebidae. [2] The type species of the genus is Amoeba proteus , a common freshwater organism, widely studied in classrooms and laboratories.
Organotrophs use organic compounds as electron/hydrogen donors. Lithotrophs use inorganic compounds as electron/hydrogen donors.. The electrons or hydrogen atoms from reducing equivalents (electron donors) are needed by both phototrophs and chemotrophs in reduction-oxidation reactions that transfer energy in the anabolic processes of ATP synthesis (in heterotrophs) or biosynthesis (in autotrophs).
[36] [37] Protozoa, like plants and animals, can be considered heterotrophs or autotrophs. [33] Autotrophs like Euglena are capable of producing their energy using photosynthesis, while heterotrophic protozoa consume food by either funneling it through a mouth-like gullet or engulfing it with pseudopods, a form of phagocytosis. [33]
Thus, heterotrophs – all animals, almost all fungi, as well as most bacteria and protozoa – depend on autotrophs, or primary producers, for the raw materials and fuel they need. Heterotrophs obtain energy by breaking down carbohydrates or oxidizing organic molecules (carbohydrates, fats, and proteins) obtained in food.