Search results
Results From The WOW.Com Content Network
In physics and chemistry, a degree of freedom is an independent physical parameter in the chosen parameterization of a physical system.More formally, given a parameterization of a physical system, the number of degrees of freedom is the smallest number of parameters whose values need to be known in order to always be possible to determine the values of all parameters in the chosen ...
The position of an n-dimensional rigid body is defined by the rigid transformation, [T] = [A, d], where d is an n-dimensional translation and A is an n × n rotation matrix, which has n translational degrees of freedom and n(n − 1)/2 rotational degrees of freedom.
In other words, degrees of freedom are the minimum number of parameters required to completely define the position of an entity in space. A rigid body has six degrees of freedom in the case of general spatial motion, three of them translational degrees of freedom and three rotational degrees of freedom.
In many scientific fields, the degrees of freedom of a system is the number of parameters of the system that may vary independently. For example, a point in the plane has two degrees of freedom for translation: its two coordinates; a non-infinitesimal object on the plane might have additional degrees of freedoms related to its orientation.
The degree of freedom that is ordered or disordered can be translational (crystalline ordering), rotational (ferroelectric ordering), or a spin state (magnetic ordering). The order can consist either in a full crystalline space group symmetry, or in a correlation.
Motion platforms can provide movement in all of the six degrees of freedom (DOF) that can be experienced by an object that is free to move, such as an aircraft or spacecraft:. [1] These are the three rotational degrees of freedom (roll, pitch, yaw) and three translational or linear degrees of freedom (surge, heave, sway).
Example of a linear molecule. N atoms in a molecule have 3N degrees of freedom which constitute translations, rotations, and vibrations.For non-linear molecules, there are 3 degrees of freedom for translational (motion along the x, y, and z directions) and 3 degrees of freedom for rotational motion (rotations in R x, R y, and R z directions) for each atom.
For a molecule with N atoms, the positions of all N nuclei depend on a total of 3 N coordinates, so that the molecule has 3 N degrees of freedom including translation, rotation and vibration. Translation corresponds to movement of the center of mass whose position can be described by 3 cartesian coordinates.