When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gaussian kernel smoother - Wikipedia

    en.wikipedia.org/wiki/Kernel_smoother

    A kernel smoother is a statistical technique to estimate a real valued function: as the weighted average of neighboring observed data. The weight is defined by the kernel, such that closer points are given higher weights. The estimated function is smooth, and the level of smoothness is set by a single parameter.

  3. Scale-space axioms - Wikipedia

    en.wikipedia.org/wiki/Scale-space_axioms

    The Gaussian kernel is also separable in Cartesian coordinates, i.e. (,,) = (,) (,). Separability is, however, not counted as a scale-space axiom, since it is a coordinate dependent property related to issues of implementation.

  4. Heat kernel - Wikipedia

    en.wikipedia.org/wiki/Heat_kernel

    In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator , and is thus of some auxiliary importance throughout mathematical physics .

  5. Kernel principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Kernel_principal_component...

    Output after kernel PCA, with a Gaussian kernel. Note in particular that the first principal component is enough to distinguish the three different groups, which is impossible using only linear PCA, because linear PCA operates only in the given (in this case two-dimensional) space, in which these concentric point clouds are not linearly separable.

  6. Density estimation - Wikipedia

    en.wikipedia.org/wiki/Density_Estimation

    The density estimates are kernel density estimates using a Gaussian kernel. That is, a Gaussian density function is placed at each data point, and the sum of the density functions is computed over the range of the data. From the density of "glu" conditional on diabetes, we can obtain the probability of diabetes conditional on "glu" via Bayes ...

  7. Low-rank matrix approximations - Wikipedia

    en.wikipedia.org/wiki/Low-rank_matrix_approximations

    Kernel methods become unfeasible when the number of points is so large such that the kernel matrix ^ cannot be stored in memory.. If is the number of training examples, the storage and computational cost required to find the solution of the problem using general kernel method is () and () respectively.

  8. Scale space - Wikipedia

    en.wikipedia.org/wiki/Scale_space

    For temporal smoothing in real-time situations, one can instead use the temporal kernel referred to as the time-causal limit kernel, [71] which possesses similar properties in a time-causal situation (non-creation of new structures towards increasing scale and temporal scale covariance) as the Gaussian kernel obeys in the non-causal case. The ...

  9. Kernel methods for vector output - Wikipedia

    en.wikipedia.org/wiki/Kernel_methods_for_vector...

    For non-Gaussian likelihoods, there is no closed form solution for the posterior distribution or for the marginal likelihood. However, the marginal likelihood can be approximated under a Laplace, variational Bayes or expectation propagation (EP) approximation frameworks for multiple output classification and used to find estimates for the ...