Search results
Results From The WOW.Com Content Network
A hydrohalogenation reaction is the electrophilic addition of hydrogen halides like hydrogen chloride or hydrogen bromide to alkenes to yield the corresponding haloalkanes. [ 1 ] [ 2 ] [ 3 ] If the two carbon atoms at the double bond are linked to a different number of hydrogen atoms, the halogen is found preferentially at the carbon with fewer ...
Swarts fluorination is a process whereby the chlorine atoms in a compound – generally an organic compound, but experiments have been performed using silanes – are replaced with fluorine, by treatment with antimony trifluoride in the presence of chlorine or of antimony pentachloride. Some metal fluorides are particularly more useful than ...
The relative rates at which different halogens react vary considerably: [citation needed] fluorine (108) > chlorine (1) > bromine (7 × 10 −11) > iodine (2 × 10 −22).. Radical fluorination with the pure element is difficult to control and highly exothermic; care must be taken to prevent an explosion or a runaway reaction.
Only haloalkanes that contain chlorine, bromine, and iodine are a threat to the ozone layer, but fluorinated volatile haloalkanes in theory may have activity as greenhouse gases. Methyl iodide , a naturally occurring substance, however, does not have ozone-depleting properties and the United States Environmental Protection Agency has designated ...
A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group. [1] The general chemical formula of the halogen addition reaction is: C=C + X 2 → X−C−C−X (X represents the halogens bromine or chlorine, and in this case, a solvent could be CH 2 ...
Halocarbon compounds are chemical compounds in which one or more carbon atoms are linked by covalent bonds with one or more halogen atoms (fluorine, chlorine, bromine or iodine – group 17) resulting in the formation of organofluorine compounds, organochlorine compounds, organobromine compounds, and organoiodine compounds.
The classic Finkelstein reaction entails the conversion of an alkyl chloride or an alkyl bromide to an alkyl iodide by treatment with a solution of sodium iodide in acetone. Sodium iodide is soluble in acetone while sodium chloride and sodium bromide are not; [ 3 ] therefore, the reaction is driven toward products by mass action due to the ...
A common method is halide metathesis. An example is the conversion of alkyl chloride into alkyl fluoride: . C 3 H 5-Cl + NaF → R-F + NaCl. This kind of reaction is called Finkelstein reaction. [2]