Search results
Results From The WOW.Com Content Network
Recent progress in deriving the Page curve for unitary black hole evaporation is a significant step towards finding both a resolution to the information paradox and a more general understanding of unitarity in quantum gravity. [21] Many researchers consider deriving the Page curve as synonymous with solving the black hole information paradox.
The simplest models of black hole evaporation lead to the black hole information paradox. The information content of a black hole appears to be lost when it dissipates, as under these models the Hawking radiation is random (it has no relation to the original information).
The Hawking radiation for an astrophysical black hole is predicted to be very weak and would thus be exceedingly difficult to detect from Earth. A possible exception, however, is the burst of gamma rays emitted in the last stage of the evaporation of primordial black holes.
Stephen Hawking’s suggestion that black holes “leak” radiation left physicists with a problem they have been attempting to solve for 51 years.
Scientists say they solved the Hawking information paradox, which states that information can neither be emitted from a black hole or preserved inside forever.
The Thorne–Hawking–Preskill bet was a public bet on the outcome of the black hole information paradox made in 1997 by physics theorists Kip Thorne and Stephen Hawking on the one side, and John Preskill on the other, according to the document they signed 6 February 1997, [1] as shown in Hawking's 2001 book The Universe in a Nutshell.
Depending on the model, primordial black holes could have initial masses ranging from 10 −8 kg [17] (the so-called Planck relics) to more than thousands of solar masses. . However, primordial black holes originally having masses lower than 10 11 kg would not have survived to the present due to Hawking radiation, which causes complete evaporation in a time much shorter than the age of the ...
In 1958, David Finkelstein used general relativity to introduce a stricter definition of a local black hole event horizon as a boundary beyond which events of any kind cannot affect an outside observer, leading to information and firewall paradoxes, encouraging the re-examination of the concept of local event horizons and the notion of black ...