Search results
Results From The WOW.Com Content Network
Angiography or arteriography is a medical imaging technique used to visualize the inside, or lumen, ... The term isotope angiography has also been used, ...
Radionuclide angiography is an area of nuclear medicine which specialises in imaging to show the functionality of the right and left ventricles of the heart, thus allowing informed diagnostic intervention in heart failure. It involves use of a radiopharmaceutical, injected into a patient, and a gamma camera for acquisition.
A ventilation/perfusion lung scan, also called a V/Q lung scan, or ventilation/perfusion scintigraphy, is a type of medical imaging using scintigraphy and medical isotopes to evaluate the circulation of air and blood within a patient's lungs, [1] [2] in order to determine the ventilation/perfusion ratio.
Nuclear medicine uses radioactive isotopes for the diagnosis and treatment of patients. Whereas radiology provides data mostly on structure, nuclear medicine provides complementary information about function. [12] All nuclear medicine scans give information to the referrering clinician on the function of the system they are imaging.
SPECT image (bone tracer) of a mouse MIP Collimator used to collimate gamma rays (red arrows) in a gamma camera. Single-photon emission computed tomography (SPECT, or less commonly, SPET) is a nuclear medicine tomographic imaging technique using gamma rays. [1]
Myocardial perfusion imaging or scanning (also referred to as MPI or MPS) is a nuclear medicine procedure that illustrates the function of the heart muscle (). [1]It evaluates many heart conditions, such as coronary artery disease (CAD), [2] hypertrophic cardiomyopathy and heart wall motion abnormalities.
The most common example of molecular imaging used clinically today is to inject a contrast agent (e.g., a microbubble, metal ion, or radioactive isotope) into a patient's bloodstream and to use an imaging modality (e.g., ultrasound, MRI, CT, PET) to track its movement in the body.
Iodinated contrast contains iodine.It is the main type of radiocontrast used for intravenous administration.Iodine has a particular advantage as a contrast agent for radiography because its innermost electron ("k-shell") binding energy is 33.2 keV, similar to the average energy of x-rays used in diagnostic radiography.