Search results
Results From The WOW.Com Content Network
The rank of a partition is the largest number k such that the partition contains at least k parts of size at least k. For example, the partition 4 + 3 + 3 + 2 + 1 + 1 has rank 3 because it contains 3 parts that are ≥ 3, but does not contain 4 parts that are ≥ 4.
Generally, a partition is a division of a whole into non-overlapping parts. Among the kinds of partitions considered in mathematics are partition of a set or an ordered partition of a set, partition of a graph, partition of an integer, partition of an interval, partition of unity, partition of a matrix; see block matrix, and
The Bell numbers are repeated along both sides of this triangle. The numbers within the triangle count partitions in which a given element is the largest singleton. The number of partitions of an n-element set into exactly k (non-empty) parts is the Stirling number of the second kind S(n, k).
The function q(n) gives the number of these strict partitions of the given sum n. For example, q(3) = 2 because the partitions 3 and 1 + 2 are strict, while the third partition 1 + 1 + 1 of 3 has repeated parts. The number q(n) is also equal to the number of partitions of n in which only odd summands are permitted. [20]
If there is a remainder in solving a partition problem, the parts will end up with unequal sizes. For example, if 52 cards are dealt out to 5 players, then 3 of the players will receive 10 cards each, and 2 of the players will receive 11 cards each, since = +.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
They are named after Eric Temple Bell, who wrote about the Bell numbers, which count the partitions of a set; the ordered Bell numbers count partitions that have been equipped with a total order. Their alternative name, the Fubini numbers, comes from a connection to Guido Fubini and Fubini's theorem on equivalent forms of multiple integrals.
In mathematics, a partition of unity of a topological space is a set of continuous functions from to the unit interval [0,1] such that for every point : there is a neighbourhood of x {\displaystyle x} where all but a finite number of the functions of R {\displaystyle R} are 0, and