Search results
Results From The WOW.Com Content Network
This method is one of the oldest commercial routes to LABs. Each process generates LAB products with distinct features. Important product characteristics include the bromine index, sulfonatability, amount of 2-phenyl isomers (2-phenylalkane), the tetralin content, amount of non-alkylbenzene components, and the linearity of the product.
It is the raw material in the production of synthetic sulfonate detergents, which are found in a variety of household products such as soap, shampoo, toothpaste, laundry detergent, etc. Linear alkylbenzenes (LAB) and branched alkylbenzenes (BAB) are families of alkylbenzene used to prepare synthetic sulfonates. However, LABs are more ...
In analytical chemistry, sample preparation (working-up) refers to the ways in which a sample is treated prior to its analyses. Preparation is a very important step in most analytical techniques, because the techniques are often not responsive to the analyte in its in-situ form, or the results are distorted by interfering species .
Most of those methods, but not all, involve the use of a solvent either for liquid-liquid extraction or extractive distillation. Many different solvents are suitable, including sulfolane (C 4 H 8 O 2 S), furfural (C 5 H 4 O 2 ), tetraethylene glycol (C 8 H 18 O 5 ), dimethylsulfoxide (C 2 H 6 OS), and N-methyl-2-pyrrolidone (C 5 H 9 NO).
Identification may be based on differences in color, odor, melting point, boiling point, solubility, radioactivity or reactivity. Classical quantitative analysis uses mass or volume changes to quantify amount. Instrumental methods may be used to separate samples using chromatography, electrophoresis or field flow fractionation.
Sample preparation for mass spectrometry is used for the optimization of a sample for analysis in a mass spectrometer (MS). Each ionization method has certain factors that must be considered for that method to be successful, such as volume, concentration , sample phase, and composition of the analyte solution.
Benzene is classified as a carcinogen, which increases the risk of cancer and other illnesses, and is also a notorious cause of bone marrow failure. Substantial quantities of epidemiologic, clinical, and laboratory data link benzene to aplastic anemia, acute leukemia, bone marrow abnormalities and cardiovascular disease.
The term stems from cumene (isopropyl benzene), the intermediate material during the process. It was invented by R. Ūdris and P. Sergeyev in 1942 (USSR), [1] and independently by Heinrich Hock in 1944. [2] [3] This process converts two relatively cheap starting materials, benzene and propylene, into two more valuable ones, phenol and acetone.