Search results
Results From The WOW.Com Content Network
Disk electromagnetic brakes are used on vehicles such as trains, and power tools such as circular saws, to stop the blade quickly when the power is turned off.A disk eddy current brake consists of a conductive non-ferromagnetic metal disc attached to the axle of the vehicle's wheel, with an electromagnet located with its poles on each side of the disk, so the magnetic field passes through the ...
Eddy currents in conductors of non-zero resistivity generate heat as well as electromagnetic forces. The heat can be used for induction heating. The electromagnetic forces can be used for levitation, creating movement, or to give a strong braking effect. Eddy currents can also have undesirable effects, for instance power loss in transformers.
Electromagnetic brakes or EM brakes are used to slow or stop vehicles using electromagnetic force to apply mechanical resistance (friction). They were originally called electro-mechanical brakes but over the years the name changed to "electromagnetic brakes", referring to their actuation method which is generally unrelated to modern electro-mechanical brakes.
The electromagnetic lines of flux have to attract and pull the armature in contact with it to complete engagement. Most industrial couplings use what is called a single flux, two pole design (A-2). Mobile clutches of other specialty electromagnetic clutches can use a double or triple flux rotor (A-4).
The truck of a SEPTA Kawasaki light rail vehicle showing the track brake magnets between the wheels. A magnetic track brake (Mg brake) is a brake for rail vehicles. It consists of brake magnets, pole shoes, a suspension, a power transmission and, in the case of mainline railroads, a track rod. When current flows through the magnet coil, the ...
However, air brakes can be made much more effective than vacuum brakes for a given size of brake cylinder. An air brake compressor is usually capable of generating a pressure of 90 psi (620 kPa; 6.2 bar) vs only 15 psi (100 kPa; 1.0 bar) for vacuum. With a vacuum system, the maximum pressure differential is atmospheric pressure (14.7 psi or 101 ...
Related types of such a brake are eddy current brakes, and electro-mechanical brakes (which actually are magnetically driven friction brakes, but nowadays are often just called "electromagnetic brakes" as well). Electromagnetic brakes slow an object through electromagnetic induction, which creates resistance and in turn either heat or ...
Eddy currents flow in closed loops in planes perpendicular to the magnetic field. They have useful applications in eddy current brakes and induction heating systems. However eddy currents induced in the metal magnetic cores of transformers and AC motors and generators are undesirable since they dissipate energy (called core losses) as heat in ...