When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Factorial - Wikipedia

    en.wikipedia.org/wiki/Factorial

    TI SR-50A, a 1975 calculator with a factorial key (third row, center right) The factorial function is a common feature in scientific calculators. [73] It is also included in scientific programming libraries such as the Python mathematical functions module [74] and the Boost C++ library. [75]

  3. Borwein's algorithm - Wikipedia

    en.wikipedia.org/wiki/Borwein's_algorithm

    Borwein's algorithm was devised by Jonathan and Peter Borwein to calculate the value of /. This and other algorithms can be found in the book Pi and the AGM – A Study in Analytic Number Theory and Computational Complexity .

  4. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  5. Turing (programming language) - Wikipedia

    en.wikipedia.org/wiki/Turing_(programming_language)

    Here is a complete program defining and using the traditional recursive function to calculate a factorial. % Accepts a number and calculates its factorial function factorial (n: int) : real if n = 0 then result 1 else result n * factorial (n - 1) end if end factorial var n: int loop put "Please input an integer: "..

  6. Stirling's approximation - Wikipedia

    en.wikipedia.org/wiki/Stirling's_approximation

    Comparison of Stirling's approximation with the factorial In mathematics , Stirling's approximation (or Stirling's formula ) is an asymptotic approximation for factorials . It is a good approximation, leading to accurate results even for small values of n {\displaystyle n} .

  7. Memoization - Wikipedia

    en.wikipedia.org/wiki/Memoization

    function factorial (n is a non-negative integer) if n is 0 then return 1 [by the convention that 0! = 1] else if n is in lookup-table then return lookup-table-value-for-n else let x = factorial(n – 1) times n [recursively invoke factorial with the parameter 1 less than n] store x in lookup-table in the n th slot [remember the result of n! for ...

  8. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    For example, in the factorial function, properly the base case is 0! = 1, while immediately returning 1 for 1! is a short circuit, and may miss 0; this can be mitigated by a wrapper function. The box shows C code to shortcut factorial cases 0 and 1.

  9. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers. constants: Limit = 1000 % Sufficient digits.