Search results
Results From The WOW.Com Content Network
Python: the KernelReg class for mixed data types in the statsmodels.nonparametric sub-package (includes other kernel density related classes), the package kernel_regression as an extension of scikit-learn (inefficient memory-wise, useful only for small datasets) R: the function npreg of the np package can perform kernel regression. [7] [8]
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
Kernel methods owe their name to the use of kernel functions, which enable them to operate in a high-dimensional, implicit feature space without ever computing the coordinates of the data in that space, but rather by simply computing the inner products between the images of all pairs of data in the feature space. This operation is often ...
The kernel of a reproducing kernel Hilbert space is used in the suite of techniques known as kernel methods to perform tasks such as statistical classification, regression analysis, and cluster analysis on data in an implicit space. This usage is particularly common in machine learning.
Let denote a random variable with domain and distribution .Given a symmetric, positive-definite kernel: the Moore–Aronszajn theorem asserts the existence of a unique RKHS on (a Hilbert space of functions : equipped with an inner product , and a norm ‖ ‖) for which is a reproducing kernel, i.e., in which the element (,) satisfies the reproducing property
There are models where the dimension of the parameter space Θ n slowly expands with n, reflecting the fact that the more observations there are, the more structural effects can be feasibly incorporated in the model. In kernel density estimation and kernel regression, an additional parameter is assumed—the bandwidth h.
The complexity of training is basically the cost of computing the kernel matrix plus the cost of solving the linear system which is roughly (). The computation of the kernel matrix for the linear or Gaussian kernel is (). The complexity of testing is ().
The linear regression model turns out to be a special case of this setting when the kernel function is chosen to be the linear kernel. In general, under the kernel machine setting, the vector of covariates is first mapped into a high-dimensional (potentially infinite-dimensional ) feature space characterized by the kernel function chosen.