Search results
Results From The WOW.Com Content Network
In logic, a set of symbols is commonly used to express logical representation. The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics.
Some programming languages, e.g., Ada, have short-circuit Boolean operators. These operators use a lazy evaluation, that is, if the value of the expression can be determined from the left hand Boolean expression then they do not evaluate the right hand Boolean expression.
In formal languages, truth functions are represented by unambiguous symbols.This allows logical statements to not be understood in an ambiguous way. These symbols are called logical connectives, logical operators, propositional operators, or, in classical logic, truth-functional connectives.
The symbol used for exclusive disjunction varies from one field of application to the next, and even depends on the properties being emphasized in a given context of discussion. In addition to the abbreviation "XOR", any of the following symbols may also be seen: + was used by George Boole in 1847. [6]
The Miscellaneous Mathematical Symbols-B block (U+2980–U+29FF) contains miscellaneous mathematical symbols, including brackets, angles, and circle symbols. Miscellaneous Mathematical Symbols-B [1] Official Unicode Consortium code chart (PDF)
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The detailed semantics of "the" ternary operator as well as its syntax differs significantly from language to language. A top level distinction from one language to another is whether the expressions permit side effects (as in most procedural languages) and whether the language provides short-circuit evaluation semantics, whereby only the selected expression is evaluated (most standard ...
A truth table is a mathematical table used in logic—specifically in connection with Boolean algebra, Boolean functions, and propositional calculus—which sets out the functional values of logical expressions on each of their functional arguments, that is, for each combination of values taken by their logical variables. [1]