When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inequality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Inequality_(mathematics)

    In mathematics, an inequality is a relation which makes a non-equal comparison between two numbers or other mathematical expressions. [1] It is used most often to compare two numbers on the number line by their size. The main types of inequality are less than (<) and greater than (>).

  3. Number line - Wikipedia

    en.wikipedia.org/wiki/Number_line

    In advanced mathematics, the number line is usually called the real line or real number line, and is a geometric line isomorphic to the set of real numbers, with which it is often conflated; both the real numbers and the real line are commonly denoted R or ⁠ ⁠. The real line is a one- dimensional real coordinate space, so is sometimes ...

  4. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    Linear inequality. In mathematics a linear inequality is an inequality which involves a linear function. A linear inequality contains one of the symbols of inequality: [1] < less than. > greater than. ≤ less than or equal to. ≥ greater than or equal to. ≠ not equal to.

  5. Inequation - Wikipedia

    en.wikipedia.org/wiki/Inequation

    Inequation. Mathematical statement that two values are not equal. In mathematics, an inequation is a statement that an inequality holds between two values. [1][2] It is usually written in the form of a pair of expressions denoting the values in question, with a relational sign between them indicating the specific inequality relation.

  6. Jensen's inequality - Wikipedia

    en.wikipedia.org/wiki/Jensen's_inequality

    Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, [1] building on an ...

  7. Sylvester–Gallai theorem - Wikipedia

    en.wikipedia.org/wiki/Sylvester–Gallai_theorem

    A line that contains exactly two of a set of points is known as an ordinary line. Another way of stating the theorem is that every finite set of points that is not collinear has an ordinary line. According to a strengthening of the theorem, every finite point set (not all on one line) has at least a linear number of ordinary lines.

  8. Triangle inequality - Wikipedia

    en.wikipedia.org/wiki/Triangle_inequality

    The first of these quadratic inequalities requires r to range in the region beyond the value of the positive root of the quadratic equation r 2 + r − 1 = 0, i.e. r > φ − 1 where φ is the golden ratio. The second quadratic inequality requires r to range between 0 and the positive root of the quadratic equation r 2 − r − 1 = 0, i.e. 0 ...

  9. AM–GM inequality - Wikipedia

    en.wikipedia.org/wiki/AM–GM_inequality

    Visual proof that (x + y)2 ≥ 4xy. Taking square roots and dividing by two gives the AM–GM inequality. [1] In mathematics, the inequality of arithmetic and geometric means, or more briefly the AM–GM inequality, states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same ...