Search results
Results From The WOW.Com Content Network
Mathematical inequality relating inner products and norms. The Cauchy–Schwarz inequality (also called Cauchy–Bunyakovsky–Schwarz inequality) [1][2][3][4] is an upper bound on the inner product between two vectors in an inner product space in terms of the product of the vector norms. It is considered one of the most important and widely ...
In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy , who originally defined it in 1830 in his article "The refraction and reflection of light".
There are three inequalities between means to prove. There are various methods to prove the inequalities, including mathematical induction, the Cauchy–Schwarz inequality, Lagrange multipliers, and Jensen's inequality. For several proofs that GM ≤ AM, see Inequality of arithmetic and geometric means.
Cauchy's estimate. In mathematics, specifically in complex analysis, Cauchy's estimate gives local bounds for the derivatives of a holomorphic function. These bounds are optimal. Cauchy's estimate is also called Cauchy's inequality, but must not be confused with the Cauchy–Schwarz inequality.
One particularly useful inequality to analyze homomorphism densities is the Cauchy–Schwarz inequality. The effect of applying the Cauchy-Schwarz inequality is "folding" the graph over a line of symmetry to relate it to a smaller graph. This allows for the reduction of densities of large but symmetric graphs to that of smaller graphs.
Cauchy–Binet formula. In mathematics, specifically linear algebra, the Cauchy–Binet formula, named after Augustin-Louis Cauchy and Jacques Philippe Marie Binet, is an identity for the determinant of the product of two rectangular matrices of transpose shapes (so that the product is well-defined and square). It generalizes the statement that ...
In algebra, the Binet–Cauchy identity, named after Jacques Philippe Marie Binet and Augustin-Louis Cauchy, states that [1] for every choice of real or complex numbers (or more generally, elements of a commutative ring). Setting ai = ci and bj = dj, it gives Lagrange's identity, which is a stronger version of the Cauchy–Schwarz inequality ...
It is a corollary of the Cauchy–Schwarz inequality that the absolute value of the Pearson correlation coefficient is not bigger than 1. Therefore, the value of a correlation coefficient ranges between −1 and +1.