When.com Web Search

  1. Ads

    related to: pythagorean theorem calculator find c

Search results

  1. Results From The WOW.Com Content Network
  2. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    When θ = π /2, ADB becomes a right triangle, r + s = c, and the original Pythagorean theorem is regained. One proof observes that triangle ABC has the same angles as triangle CAD, but in opposite order. (The two triangles share the angle at vertex A, both contain the angle θ, and so also have the same third angle by the triangle postulate.)

  3. Pythagorean trigonometric identity - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_trigonometric...

    which by the Pythagorean theorem is equal to 1. This definition is valid for all angles, due to the definition of defining x = cos θ and y sin θ for the unit circle and thus x = c cos θ and y = c sin θ for a circle of radius c and reflecting our triangle in the y-axis and setting a = x and b = y.

  4. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    Fig. 1 – A triangle. The angles α (or A), β (or B), and γ (or C) are respectively opposite the sides a, b, and c.. In trigonometry, the law of cosines (also known as the cosine formula or cosine rule) relates the lengths of the sides of a triangle to the cosine of one of its angles.

  5. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    There are many ways to prove Heron's formula, for example using trigonometry as below, or the incenter and one excircle of the triangle, [7] or as a special case of De Gua's theorem (for the particular case of acute triangles), [8] or as a special case of Brahmagupta's formula (for the case of a degenerate cyclic quadrilateral).

  6. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin( α + β ) = sin α cos β + cos α sin ...

  7. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    The Pythagorean theorem is also ancient, but it could only take its central role in the measurement of distances after the invention of Cartesian coordinates by René Descartes in 1637. The distance formula itself was first published in 1731 by Alexis Clairaut . [ 33 ]

  8. Hypotenuse - Wikipedia

    en.wikipedia.org/wiki/Hypotenuse

    The Pythagorean theorem, and hence this length, can also be derived from the law of cosines in trigonometry. In a right triangle, the cosine of an angle is the ratio of the leg adjacent of the angle and the hypotenuse. For a right angle γ (gamma), where the adjacent leg equals 0, the cosine of γ also equals 0.

  9. Proofs of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/Proofs_of_trigonometric...

    Trigonometric functions specify the relationships between side lengths and interior angles of a right triangle. For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse.