When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Transcription-translation coupling - Wikipedia

    en.wikipedia.org/wiki/Transcription-translation...

    Degradation of prokaryotic mRNAs is accelerated by loss of coupled translation due to increased availability of target sites of RNase E. [6] It has also been suggested that coupling of transcription with translation is an important mechanism of preventing formation of deleterious R-loops. [7]

  3. Translation regulation by 5′ transcript leader cis-elements

    en.wikipedia.org/wiki/Translation_regulation_by_5...

    Alterations in translation of mRNA into proteins rapidly modulates the proteome without changing upstream steps such as transcription, pre-mRNA splicing, and nuclear export. [1] The strict regulation of translation in both space and time is in part governed by cis-regulatory elements located in 5′ mRNA transcript leaders (TLs) and 3 ...

  4. Bacterial transcription - Wikipedia

    en.wikipedia.org/wiki/Bacterial_transcription

    Bacterial transcription differs from eukaryotic transcription in several ways. In bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm. [14]

  5. Bacterial translation - Wikipedia

    en.wikipedia.org/wiki/Bacterial_translation

    Initiation of translation in bacteria involves the assembly of the components of the translation system, which are: the two ribosomal subunits (50S and 30S subunits); the mature mRNA to be translated; the tRNA charged with N-formylmethionine (the first amino acid in the nascent peptide); guanosine triphosphate (GTP) as a source of energy, and the three prokaryotic initiation factors IF1, IF2 ...

  6. Eukaryotic translation - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_translation

    Translation is one of the key energy consumers in cells, hence it is strictly regulated. Numerous mechanisms have evolved that control and regulate translation in eukaryotes as well as prokaryotes. Regulation of translation can impact the global rate of protein synthesis which is closely coupled to the metabolic and proliferative state of a cell.

  7. Post-transcriptional modification - Wikipedia

    en.wikipedia.org/wiki/Post-transcriptional...

    Transcriptional modification or co-transcriptional modification is a set of biological processes common to most eukaryotic cells by which an RNA primary transcript is chemically altered following transcription from a gene to produce a mature, functional RNA molecule that can then leave the nucleus and perform any of a variety of different functions in the cell. [1]

  8. Attenuator (genetics) - Wikipedia

    en.wikipedia.org/wiki/Attenuator_(genetics)

    (This differs from eukaryotic cells, where RNA must exit the nucleus before translation starts.) The attenuator sequence, which is located between the mRNA leader sequence (5' UTR) and trp operon gene sequence, contains four domains, where domain 3 can pair with domain 2 or domain 4.

  9. Translational regulation - Wikipedia

    en.wikipedia.org/wiki/Translational_regulation

    The hallmark difference of elongation in eukaryotes in comparison to prokaryotes is its separation from transcription. While prokaryotes are able to undergo both cellular processes simultaneously, the spatial separation that is provided by the nuclear membrane prevents this coupling in eukaryotes.