Search results
Results From The WOW.Com Content Network
Liquid properties Std enthalpy change of formation, Δ f H o liquid: −238.4 kJ/mol Standard molar entropy, S o liquid: 127.2 J/(mol K) Enthalpy of combustion Δ c H o: −715.0 kJ/mol Heat capacity, c p: 70.8–90.5 J/(mol K) (at −97.6 to 64.7 °C) [5] 79.9 J/(mol K) at 20 °C Gas properties Std enthalpy change of formation, Δ f H o gas ...
Methanol is a promising energy carrier because, as a liquid, it is easier to store than hydrogen and natural gas. Its energy density is, however, lower than methane , per kg. Its combustion energy density is 15.6 MJ / L ( LHV ), whereas that of ethanol is 24 and gasoline is 33 MJ/L.
Critical points of the elements (data page) — Critical point; Densities of the elements (data page) — Density (solid, liquid, gas) Elastic properties of the elements (data page) — Young's modulus, Poisson ratio, bulk modulus, shear modulus; Electrical resistivities of the elements (data page) — Electrical resistivity
A non-physical standard state is one whose properties are obtained by extrapolation from a physical state (for example, a solid superheated above the normal melting point, or an ideal gas at a condition where the real gas is non-ideal). Metastable liquids and solids are important because some substances can persist and be used in that state ...
Boca Raton, Florida, 2003; Section 6, Fluid Properties; Critical Constants. Also agrees with Celsius values from Section 4: Properties of the Elements and Inorganic Compounds, Melting, Boiling, Triple, and Critical Point Temperatures of the Elements Estimated accuracy for Tc and Pc is indicated by the number of digits.
For gases, departure from 3 R per mole of atoms is generally due to two factors: (1) failure of the higher quantum-energy-spaced vibration modes in gas molecules to be excited at room temperature, and (2) loss of potential energy degree of freedom for small gas molecules, simply because most of their atoms are not bonded maximally in space to ...
The following table lists the Van der Waals constants (from the Van der Waals equation) for a number of common gases and volatile liquids. [ 1 ] To convert from L 2 b a r / m o l 2 {\displaystyle \mathrm {L^{2}bar/mol^{2}} } to L 2 k P a / m o l 2 {\displaystyle \mathrm {L^{2}kPa/mol^{2}} } , multiply by 100.
J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 6, Thermodynamic Properties; Table 6.3, Enthalpies and Gibbs Energies of Formation, Entropies, and Heat Capacities of the Elements and Inorganic Compounds