When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kilogram - Wikipedia

    en.wikipedia.org/wiki/Kilogram

    10 −1 g dg decigram 10 1 g dag decagram 10 −2 g cg centigram 10 2 g hg hectogram 10 −3 g mg: milligram: 10 3 g kg: kilogram: 10 −6 g μg: microgram: 10 6 g Mg: megagram: 10 −9 g ng: nanogram: 10 9 g Gg: gigagram: 10 −12 g pg: picogram: 10 12 g Tg: teragram: 10 −15 g fg femtogram 10 15 g Pg petagram 10 −18 g ag attogram 10 18 g ...

  3. Orders of magnitude (mass) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(mass)

    10 −1 g dg decigram 10 1 g dag decagram 10 −2 g cg: centigram: 10 2 g hg hectogram 10 −3 g mg: milligram: 10 3 g kg: kilogram: 10 −6 g μg: microgram (mcg) 10 6 g Mg megagram 10 −9 g ng: nanogram: 10 9 g Gg gigagram 10 −12 g pg picogram 10 12 g Tg teragram 10 −15 g fg femtogram 10 15 g Pg petagram 10 −18 g ag attogram 10 18 g Eg ...

  4. Gram - Wikipedia

    en.wikipedia.org/wiki/Gram

    The gram (originally gramme; [1] SI unit symbol g) is a unit of mass in the International System of Units (SI) equal to one thousandth of a kilogram.. Originally defined as of 1795 as "the absolute weight of a volume of pure water equal to the cube of the hundredth part of a metre [1 cm 3], and at the temperature of melting ice", [2] the defining temperature (≈0 °C) was later changed to 4 ...

  5. Mass - Wikipedia

    en.wikipedia.org/wiki/Mass

    If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.

  6. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    In addition to Poynting, measurements were made by C. V. Boys (1895) [25] and Carl Braun (1897), [26] with compatible results suggesting G = 6.66(1) × 10 −11 m 3 ⋅kg1 ⋅s −2. The modern notation involving the constant G was introduced by Boys in 1894 [12] and becomes standard by the end of the 1890s, with values usually cited in the ...

  7. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    The g-force acting on a stationary object resting on the Earth's surface is 1 g (upwards) and results from the resisting reaction of the Earth's surface bearing upwards equal to an acceleration of 1 g, and is equal and opposite to gravity. The number 1 is approximate, depending on location.

  8. List of metric units - Wikipedia

    en.wikipedia.org/wiki/List_of_metric_units

    The hyl is a unit of mass equal to 1 kgf⋅m −1 ⋅s 2 (9.806 65 kg). The poncelet (p) is a unit of power equal to 1 kgf ⋅m⋅s −1 ( 980.665 W ). The technical atmosphere (at) is a (non-coherent) unit of pressure equal to 1 kgf ⋅cm −2 ( 98 066 .5 Pa ).

  9. Gravitational metric system - Wikipedia

    en.wikipedia.org/wiki/Gravitational_metric_system

    It is the gravitational force of one kilogram, i.e. 1 kgf, exerted on an area of one square centimetre. 1 at = 1 kp/cm 2 = 10 000 × g n kg/m 2 = 98 066.5 kg/(m⋅s 2 ) = 98.066 5 kPa