When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Equivalent weight - Wikipedia

    en.wikipedia.org/wiki/Equivalent_weight

    The equivalent weight of an element is the mass which combines with or displaces 1.008 gram of hydrogen or 8.0 grams of oxygen or 35.5 grams of chlorine. The equivalent weight of an element is the mass of a mole of the element divided by the element's valence. That is, in grams, the atomic weight of the element divided by the usual valence. [2]

  3. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    Mass near the M87* black hole is converted into a very energetic astrophysical jet, stretching five thousand light years. In physics, mass–energy equivalence is the relationship between mass and energy in a system's rest frame, where the two quantities differ only by a multiplicative constant and the units of measurement.

  4. Orders of magnitude (mass) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(mass)

    An overview of ranges of mass. To help compare different orders of magnitude, the following lists describe various mass levels between 10 −67 kg and 10 52 kg. The least massive thing listed here is a graviton, and the most massive thing is the observable universe.

  5. Gram - Wikipedia

    en.wikipedia.org/wiki/Gram

    The gram (originally gramme; [1] SI unit symbol g) is a unit of mass in the International System of Units (SI) equal to one thousandth of a kilogram.. Originally defined as of 1795 as "the absolute weight of a volume of pure water equal to the cube of the hundredth part of a metre [1 cm 3], and at the temperature of melting ice", [2] the defining temperature (≈0 °C) was later changed to 4 ...

  6. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    The g-force or gravitational force equivalent is a mass-specific force (force per unit mass), expressed in units of standard gravity (symbol g or g 0, not to be confused with "g", the symbol for grams). It is used for sustained accelerations, that cause a perception of weight.

  7. Kilogram - Wikipedia

    en.wikipedia.org/wiki/Kilogram

    The kilogram, symbol kg, is the SI unit of mass. It is defined by taking the fixed numerical value of the Planck constant h to be 6.626 070 15 × 10 −34 when expressed in the unit J⋅s, which is equal to kg⋅m 2 ⋅s −1, where the metre and the second are defined in terms of c and Δν Cs. —

  8. International Prototype of the Kilogram - Wikipedia

    en.wikipedia.org/wiki/International_prototype_of...

    Gy = J/kg = ⁠ kg m 2 /s 2 / kg ⁠ = m 2 /s 2; S = 1/Ω = ⁠ 10 −7 s / k A m ⁠ H = Ω s = 10 7 k A m; Because the magnitude of many of the units composing the SI system of measurement was until 2019 defined by its mass, the quality of the IPK was diligently protected to preserve the integrity of the SI system.

  9. Specific energy - Wikipedia

    en.wikipedia.org/wiki/Specific_energy

    If a comet with this speed fell to the Earth it would gain another 63 MJ/kg, yielding a total of 2655 MJ/kg with a speed of 72.9 km/s. Since the equator is moving at about 0.5 km/s, the impact speed has an upper limit of 73.4 km/s, giving an upper limit for the specific energy of a comet hitting the Earth of about 2690 MJ/kg.