Search results
Results From The WOW.Com Content Network
The set of possible combinations of state variable values is called the state space of the system. The equations relating the current state of a system to its most recent input and past states are called the state equations, and the equations expressing the values of the output variables in terms of the state variables and inputs are called the ...
The internal state variables are the smallest possible subset of system variables that can represent the entire state of the system at any given time. [13] The minimum number of state variables required to represent a given system, , is usually equal to the order of the system's defining differential equation, but not necessarily.
In physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. [1] [2] Most modern equations of state are formulated in the Helmholtz free energy.
A state function describes equilibrium states of a system, thus also describing the type of system. A state variable is typically a state function so the determination of other state variable values at an equilibrium state also determines the value of the state variable as the state function at that state. The ideal gas law is a good example ...
In particular, the output of the observer may be subtracted from the output of the plant and then multiplied by a matrix ; this is then added to the equations for the state of the observer to produce a so-called Luenberger observer, defined by the equations below. Note that the variables of a state observer are commonly denoted by a "hat ...
Besides the directly measurable ordinary physical variables that originally identify a thermodynamic state of a system, the system is characterized by further quantities called state functions, which are also called state variables, thermodynamic variables, state quantities, or functions of state. They are uniquely determined by the ...
The costate variables () can be interpreted as Lagrange multipliers associated with the state equations. The state equations represent constraints of the minimization problem, and the costate variables represent the marginal cost of violating those constraints; in economic terms the costate variables are the shadow prices.
The Bellman equation can be solved by backwards induction, either analytically in a few special cases, or numerically on a computer. Numerical backwards induction is applicable to a wide variety of problems, but may be infeasible when there are many state variables, due to the curse of dimensionality.