When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spherical sector - Wikipedia

    en.wikipedia.org/wiki/Spherical_sector

    If the radius of the sphere is denoted by r and the height of the cap by h, the volume of the spherical sector is =. This may also be written as V = 2 π r 3 3 ( 1 − cos ⁡ φ ) , {\displaystyle V={\frac {2\pi r^{3}}{3}}(1-\cos \varphi )\,,} where φ is half the cone angle, i.e., φ is the angle between the rim of the cap and the direction ...

  3. Pappus's centroid theorem - Wikipedia

    en.wikipedia.org/wiki/Pappus's_centroid_theorem

    The theorem applied to an open cylinder, cone and a sphere to obtain their surface areas. The centroids are at a distance a (in red) from the axis of rotation.. In mathematics, Pappus's centroid theorem (also known as the Guldinus theorem, Pappus–Guldinus theorem or Pappus's theorem) is either of two related theorems dealing with the surface areas and volumes of surfaces and solids of ...

  4. Spherical cap - Wikipedia

    en.wikipedia.org/wiki/Spherical_cap

    An example of a spherical cap in blue (and another in red) In geometry, a spherical cap or spherical dome is a portion of a sphere or of a ball cut off by a plane.It is also a spherical segment of one base, i.e., bounded by a single plane.

  5. Solid angle - Wikipedia

    en.wikipedia.org/wiki/Solid_angle

    Diagram showing a section through the centre of a cone (1) subtending a solid angle of 1 steradian in a sphere of radius r, along with the spherical "cap" (2). The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1.

  6. Steradian - Wikipedia

    en.wikipedia.org/wiki/Steradian

    The magnitude of the solid angle expressed in steradians is defined as the quotient of the surface area of the spherical cap and the square of the sphere's radius. This is analogous to the way a plane angle projected onto a circle defines a circular arc on the circumference, whose length is proportional to the angle. Steradians can be used to ...

  7. Cone - Wikipedia

    en.wikipedia.org/wiki/Cone

    A cone and a cylinder have radius r and height h. 2. The volume ratio is maintained when the height is scaled to h' = r √ π. 3. Decompose it into thin slices. 4. Using Cavalieri's principle, reshape each slice into a square of the same area. 5. The pyramid is replicated twice. 6. Combining them into a cube shows that the volume ratio is 1:3.

  8. Napkin ring problem - Wikipedia

    en.wikipedia.org/wiki/Napkin_ring_problem

    The cross-section of the band with the plane at height is the region inside the larger circle of radius given by (2) and outside the smaller circle of radius given by (1). The cross-section's area is therefore the area of the larger circle minus the area of the smaller circle: () = (()) = (()).

  9. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    If it is restricted between the hyperplanes w = 0 and w = r for some nonzero r, then it may be closed by a 3-ball of radius r, centered at (0,0,0,r), so that it bounds a finite 4-dimensional volume. This volume is given by the formula ⁠ 1 / 3 ⁠ π r 4, and is the 4-dimensional equivalent of the solid cone. The ball may be thought of as the ...