Search results
Results From The WOW.Com Content Network
As an example, "is less than" is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3), and likewise between 3 and 4 (denoted as 3 < 4), but not between the values 3 and 1 nor between 4 and 4, that is, 3 < 1 and 4 < 4 both evaluate to false.
Any equivalence relation is the negation of an apartness relation, though the converse statement only holds in classical mathematics (as opposed to constructive mathematics), since it is equivalent to the law of excluded middle. Each relation that is both reflexive and left (or right) Euclidean is also an equivalence relation.
For example, the relation defined by xRy if xy is an even number is intransitive, [13] but not antitransitive. [14] The relation defined by xRy if x is even and y is odd is both transitive and antitransitive. [15] The relation defined by xRy if x is the successor number of y is both intransitive [16] and antitransitive. [17]
This set-theoretic definition is based on the fact that a function establishes a relation between the elements of the domain and some (possibly all) elements of the codomain. Mathematically, a binary relation between two sets X and Y is a subset of the set of all ordered pairs ( x , y ) {\displaystyle (x,y)} such that x ∈ X {\displaystyle x ...
The definition of equivalence relations implies that the equivalence classes form a partition of , meaning, that every element of the set belongs to exactly one equivalence class. The set of the equivalence classes is sometimes called the quotient set or the quotient space of S {\displaystyle S} by ∼ , {\displaystyle \,\sim \,,} and is ...
[8] [9] This definition is equivalent to a partial order on a setoid, where equality is taken to be a defined equivalence relation rather than set equality. [10] Wallis defines a more general notion of a partial order relation as any homogeneous relation that is transitive and antisymmetric. This includes both reflexive and irreflexive partial ...
If a strongly connected relation is symmetric, it is the universal relation. A relation is strongly connected if, and only if, it is connected and reflexive. [proof 1] A connected relation on a set cannot be antitransitive, provided has at least 4 elements. [16]
In constructive mathematics, "not empty" and "inhabited" are not equivalent: every inhabited set is not empty but the converse is not always guaranteed; that is, in constructive mathematics, a set that is not empty (where by definition, "is empty" means that the statement () is true) might not have an inhabitant (which is an such that ).