Search results
Results From The WOW.Com Content Network
The figure at right illustrates the formula. Notice that the slope in the example of the figure is negative. The formula also provides a negative slope, as can be seen from the following property of the logarithm: (/) = (/).
Regions of the curve which have a negative slope (declining to the right) represent operating regions where the device has negative differential resistance, while regions of positive slope represent positive differential resistance. Negative resistance devices can be used to make amplifiers and oscillators.
Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.
If it is positive then the graph has an upward concavity, and, if it is negative the graph has a downward concavity. If it is zero, then one has an inflection point or an undulation point . When the slope of the graph (that is the derivative of the function) is small, the signed curvature is well approximated by the second derivative.
Newton's laws are often stated in terms of point or particle masses, that is, bodies whose volume is negligible. This is a reasonable approximation for real bodies when the motion of internal parts can be neglected, and when the separation between bodies is much larger than the size of each.
The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let ( m , n ) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point ( x 0 , y 0 ).
The value of the slope dP/dT is given by the Clausius–Clapeyron equation for fusion (melting) [11] =, where ΔH fus is the heat of fusion which is always positive, and ΔV fus is the volume change for fusion.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]