Search results
Results From The WOW.Com Content Network
A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.
It is based on Stochastic Neighbor Embedding originally developed by Geoffrey Hinton and Sam Roweis, [1] where Laurens van der Maaten and Hinton proposed the t-distributed variant. [2] It is a nonlinear dimensionality reduction technique for embedding high-dimensional data for visualization in a low-dimensional space of two or three dimensions ...
Sparse principal component analysis (SPCA or sparse PCA) is a technique used in statistical analysis and, in particular, in the analysis of multivariate data sets. It extends the classic method of principal component analysis (PCA) for the reduction of dimensionality of data by introducing sparsity structures to the input variables.
scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...
The lower bandwidth of a matrix A is the smallest number p such that the entry a i,j vanishes whenever i > j + p. Similarly, the upper bandwidth is the smallest number p such that a i,j = 0 whenever i < j − p (Golub & Van Loan 1996, §1.2.1). For example, a tridiagonal matrix has lower bandwidth 1 and upper bandwidth 1. As another example ...
3.4 TB English text, 1.4 TB Chinese text, 1.1 TB Russian text, 595 MB German text, 431 MB French text, and data for 150+ languages (figures for version 23.01) JSON Lines [458] Natural Language Processing, Text Prediction 2021 [459] [460] Ortiz Suarez, Abadji, Sagot et al. OpenWebText An open-source recreation of the WebText corpus.
It was proven in 2014 that the elastic net can be reduced to the linear support vector machine. [7] A similar reduction was previously proven for the LASSO in 2014. [8] The authors showed that for every instance of the elastic net, an artificial binary classification problem can be constructed such that the hyper-plane solution of a linear support vector machine (SVM) is identical to the ...
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]