Search results
Results From The WOW.Com Content Network
Sighting in a firearm is an important test of the ability of the firearm user to hit anticipated targets with available ammunition. Pictures or silhouettes of intended targets are less suitable for sighting in than high contrast shapes compatible with the type of sights on the firearm. Contrasting circles are commonly used as sighting in ...
A milliradian (SI-symbol mrad, sometimes also abbreviated mil) is an SI derived unit for angular measurement which is defined as a thousandth of a radian (0.001 radian). ). Milliradians are used in adjustment of firearm sights by adjusting the angle of the sight compared to the barrel (up, down, left, or
An optically ideal 10× sight in this example has been perfectly parallax corrected at 1,000 meters (1,094 yd) and functions flawlessly at that distance. If the same sight is used at 100 meters (109 yd) the target picture would be projected (1000 m / 100 m) / 100 mm = 0.1 mm behind the reticle plane.
Assume a rifle is being fired that shoots with the bullet drop table given in Table 1. This means that the rifle sight setting for any range from 0 to 500 meters is available. The sight adjustment procedure can be followed step-by-step. 1. Determine the slant range to the target.
A reflector sight or reflex sight is an optical sight that allows the user to look through a partially reflecting glass element and see an illuminated projection of an aiming point or some other image superimposed on the field of view.
A bore-sighting device is usually used to roughly zero the sight before a first-time shooter takes it to the range. Adjustments come in 0.25-mil clicks (one mil equals 10 cm at a range of 100 m, so each click adjusts the sight by 2.5 cm at 100 m). Sighting in a C79 sight is normally done at a range of 200 m.
A more modern method of boresighting is to use a laser pointer to illuminate the distant point of aim, rather than using visual inspection. This method is preferable because it has less parallax, allows more movement in the gun as the projected laser beam will stay true to the bore axis, and does not require removing the bolt.
Originally crosshairs were constructed out of hair or spiderweb, these materials being sufficiently thin and strong. Many modern scopes use wire crosshairs, which can be flattened to various degrees to change the width. These wires are usually silver in color, but appear black when backlit by the image passing through the scope's optics.