Ads
related to: ordered pair calculator
Search results
Results From The WOW.Com Content Network
The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, equals the unordered pair {b, a}. Ordered pairs are also called 2-tuples, or sequences (sometimes, lists in a computer science context) of length 2. Ordered pairs of scalars are sometimes called 2-dimensional vectors.
Illustration of a plane, showing the absolute values (unsigned dotted line lengths) of the coordinates of the points (2, 3), (0, 0), (−3, 1), and (−1.5, −2.5). The first of these signed ordered pairs is the abscissa of the corresponding point, and the second value is its ordinate.
An ordered pair is a 2-tuple or couple. More generally still, one can define the Cartesian product of an indexed family of sets. The Cartesian product is named after René Descartes , [ 5 ] whose formulation of analytic geometry gave rise to the concept, which is further generalized in terms of direct product .
Vectors can be specified using either ordered pair notation (a subset of ordered set notation using only two components), or matrix notation, as with rectangular coordinates. In these forms, the first component of the vector is r (instead of v 1), and the second component is θ (instead of v 2).
The total ordering is defined by considering x and y as sets of ordered pairs (as a function is normally defined): Either x = y, or else the surreal number z = x ∩ y is in the domain of x or the domain of y (or both, but in this case the signs must disagree).
A split-complex number is an ordered pair of real numbers, written in the form = + where x and y are real numbers and the hyperbolic unit [1] j satisfies = + In the field of complex numbers the imaginary unit i satisfies =
Generally, an interval in mathematics corresponds to an ordered pair (x, y) taken from the direct product of real numbers with itself, where it is often assumed that y > x. For purposes of mathematical structure, this restriction is discarded, [18] and "reversed intervals" where y − x < 0 are allowed.
The example at left is that of an orthogonal array with symbol set {1,2} and strength 2. Notice that the four ordered pairs (2-tuples) formed by the rows restricted to the first and third columns, namely (1,1), (2,1), (1,2) and (2,2), are all the possible ordered pairs of the two element set and each appears exactly once.