Search results
Results From The WOW.Com Content Network
Density system unit unit-code symbol or abbrev. notes sample default conversion combination output units Metric: kilogram per cubic metre: kg/m3 kg/m 3: 1.0 kg/m 3 (1.7 lb/cu yd)
kg/m3 lb/yd3 (kg/m3 lb/cuyd) gram per cubic metre: g/m3 g/m 3: 1.0 g/m 3 (0.0017 lb/cu yd) g/m3 kg/m3; g/m3 lb/ft3 (g/cm3 lb/cuft) g/m3 lb/yd3 (g/cm3 lb/cuyd) Imperial & US customary: pound per cubic foot: lb/ft3 lb/cu ft 1.0 lb/cu ft (0.016 g/cm 3) lb/ft3 kg/m3 (lb/cu ft g/m3) lb/ft3 g/m3 (lb/cu ft g/m3) pound per cubic yard: lb/yd3 lb/cu yd 1 ...
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
The kilogram per cubic metre (symbol: kg·m −3, or kg/m 3) is the unit of density in the International System of Units (SI). It is defined by dividing the SI unit of mass, the kilogram, by the SI unit of volume, the cubic metre. [1]
The interest stems from that accurate measurements of the unit cell volume, atomic weight and mass density of a pure crystalline solid provide a direct determination of the Avogadro constant. [ 3 ] The CODATA recommended value for the molar volume of silicon is 1.205 883 199 (60) × 10 −5 m 3 ⋅mol −1 , with a relative standard uncertainty ...
If the size of the chamber remains constant and some atoms are removed, the density decreases and the specific volume increases. Specific volume is a property of materials, defined as the number of cubic meters occupied by one kilogram of a particular substance. The standard unit is the meter cubed per kilogram (m 3 /kg or m 3 ·kg −1).
At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3. The following table illustrates the air density–temperature relationship at 1 atm or 101.325 kPa: [citation needed]
The volumetric heat capacity can also be expressed as the specific heat capacity (heat capacity per unit of mass, in J⋅K −1 ⋅kg −1) times the density of the substance (in kg/L, or g/mL). [1] It is defined to serve as an intensive property.