Search results
Results From The WOW.Com Content Network
Both NAD + and NADH strongly absorb ultraviolet light because of the adenine. For example, peak absorption of NAD + is at a wavelength of 259 nanometers (nm), with an extinction coefficient of 16,900 M −1 cm −1. NADH also absorbs at higher wavelengths, with a second peak in UV absorption at 339 nm with an extinction coefficient of 6,220 M ...
Fluorescence is widely used in the life sciences as a powerful and minimally invasive method to track and analyze biological molecules in real-time Some proteins or small molecules in cells are naturally fluorescent, which is called intrinsic fluorescence or autofluorescence (such as NADH, tryptophan or endogenous chlorophyll, phycoerythrin or ...
Nicotinamide adenine dinucleotide phosphate, abbreviated NADP [1] [2] or, in older notation, TPN (triphosphopyridine nucleotide), is a cofactor used in anabolic reactions, such as the Calvin cycle and lipid and nucleic acid syntheses, which require NADPH as a reducing agent ('hydrogen source').
[10] While under standard conditions malate cannot reduce the more electronegative NAD +:NADH couple, in the cell the concentration of oxaloacetate is kept low enough that Malate dehydrogenase can reduce NAD + to NADH during the citric acid cycle. Fumarate + 2 H + + 2 e − → Succinate +0.03 [9] O 2 + 2H + + 2e − → H 2 O 2 +0.30
Reaction of FAD to form FADH 2 Approximate absorption spectrum for FAD. FAD can be reduced to FADH 2 through the addition of 2 H + and 2 e −. FADH 2 can also be oxidized by the loss of 1 H + and 1 e − to form FADH. The FAD form can be recreated through the further loss of 1 H + and 1 e −.
Emission spectrum of a ceramic metal halide lamp. A demonstration of the 589 nm D 2 (left) and 590 nm D 1 (right) emission sodium D lines using a wick with salt water in a flame The emission spectrum of a chemical element or chemical compound is the spectrum of frequencies of electromagnetic radiation emitted due to electrons making a ...
Micrograph of paper autofluorescing under ultraviolet illumination. The individual fibres in this sample are around 10 μm in diameter.. Autofluorescence is the natural fluorescence of biological structures such as mitochondria and lysosomes, in contrast to fluorescence originating from artificially added fluorescent markers (fluorophores).
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.