Search results
Results From The WOW.Com Content Network
One application of the algorithm is finding sequence alignments of DNA or protein sequences. It is also a space-efficient way to calculate the longest common subsequence between two sets of data such as with the common diff tool. The Hirschberg algorithm can be derived from the Needleman–Wunsch algorithm by observing that: [3]
In bioinformatics, a sequence alignment is a way of arranging the sequences of DNA, RNA, or protein to identify regions of similarity that may be a consequence of functional, structural, or evolutionary relationships between the sequences. [1] Aligned sequences of nucleotide or amino acid residues are typically represented as rows within a matrix.
More observed differences between two sequences may arise as a result of stochastic sequencing errors. Similarly, when performing assembly of a previously characterized genome, an attempt is made to align the newly sequenced DNA fragments to the existing genome sequence.
Multiple sequence alignment (MSA) is the process or the result of sequence alignment of three or more biological sequences, generally protein, DNA, or RNA. These alignments are used to infer evolutionary relationships via phylogenetic analysis and can highlight homologous features between sequences.
The multiple sequence alignment problem is generally based on pairwise sequence alignment and currently, for a pairwise sequence alignment problem, biologists can use a dynamic programming approach to obtain its optimal solution. However, the multiple sequence alignment problem is still one of the more challenging problems in bioinformatics.
To make the design conform to 2NF, it is necessary to have two relations. To create these relations: Remove the functionally dependent attributes in the partial dependencies of the first normal form relation. In this example, {Manufacturer country} is the functionally dependent attribute which will be removed.
The Smith–Waterman algorithm performs local sequence alignment; that is, for determining similar regions between two strings of nucleic acid sequences or protein sequences. Instead of looking at the entire sequence, the Smith–Waterman algorithm compares segments of all possible lengths and optimizes the similarity measure .
For example, in 2013, a Fast Optimal Global Sequence Alignment Algorithm (FOGSAA), [9] suggested alignment of nucleotide/protein sequences faster than other optimal global alignment methods, including the Needleman–Wunsch algorithm. The paper claims that when compared to the Needleman–Wunsch algorithm, FOGSAA achieves a time gain of 70–90 ...