When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hill equation (biochemistry) - Wikipedia

    en.wikipedia.org/wiki/Hill_equation_(biochemistry)

    The binding of a ligand to a macromolecule is often enhanced if there are already other ligands present on the same macromolecule (this is known as cooperative binding). The Hill equation is useful for determining the degree of cooperativity of the ligand(s) binding to the enzyme or receptor. The Hill coefficient provides a way to quantify the ...

  3. Cooperative binding - Wikipedia

    en.wikipedia.org/wiki/Cooperative_binding

    The first description of cooperative binding to a multi-site protein was developed by A.V. Hill. [4] Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been named after him:

  4. Cooperativity - Wikipedia

    en.wikipedia.org/wiki/Cooperativity

    The sigmoidal shape of hemoglobin's oxygen-dissociation curve results from cooperative binding of oxygen to hemoglobin. An example of positive cooperativity is the binding of oxygen to hemoglobin. One oxygen molecule can bind to the ferrous iron of a heme molecule in each of the four chains of a hemoglobin molecule.

  5. Sequential model - Wikipedia

    en.wikipedia.org/wiki/Sequential_model

    A multimeric protein's affinity for a ligand changes upon binding to a ligand, a process known as cooperativity. This phenomenon was first discovered by Christian Bohr's analysis of hemoglobin, whose binding affinity for molecular oxygen increases as oxygen binds its subunits. [1]

  6. Hemoglobin - Wikipedia

    en.wikipedia.org/wiki/Hemoglobin

    The binding of glucose to amino acids in the hemoglobin takes place spontaneously (without the help of an enzyme) in many proteins, and is not known to serve a useful purpose. However, as the concentration of glucose in the blood increases, the percentage of Hb A that turns into Hb A 1c increases.

  7. Monod–Wyman–Changeux model - Wikipedia

    en.wikipedia.org/wiki/Monod–Wyman–Changeux_model

    This model explains sigmoidal binding properties (i.e. positive cooperativity) as change in concentration of ligand over a small range will lead to a large increase in the proportion of molecules in the R state, and thus will lead to a high association of the ligand to the protein. It cannot explain negative cooperativity.

  8. Hemocyanin - Wikipedia

    en.wikipedia.org/wiki/Hemocyanin

    Hemoglobin, for comparison, has a Hill coefficient of usually 2.8–3.0. In these cases of cooperative binding hemocyanin was arranged in protein sub-complexes of 6 subunits (hexamer) each with one oxygen binding site; binding of oxygen on one unit in the complex would increase the affinity of the neighboring units. Each hexamer complex was ...

  9. Enzyme kinetics - Wikipedia

    en.wikipedia.org/wiki/Enzyme_kinetics

    Negative cooperativity occurs when binding of the first substrate decreases the affinity of the enzyme for other substrate molecules. Allosteric enzymes include mammalian tyrosyl tRNA-synthetase, which shows negative cooperativity, [ 37 ] and bacterial aspartate transcarbamoylase [ 38 ] and phosphofructokinase , [ 39 ] which show positive ...