Ad
related to: how to measure apparent brightness
Search results
Results From The WOW.Com Content Network
Apparent magnitude (m) is a measure of the brightness of a star, astronomical object or other celestial objects like artificial satellites. Its value depends on its intrinsic luminosity , its distance, and any extinction of the object's light caused by interstellar dust along the line of sight to the observer.
Absolute photometry is the measurement of the apparent brightness of an object on a standard photometric system; these measurements can be compared with other absolute photometric measurements obtained with different telescopes or instruments. Differential photometry is the measurement of the difference in brightness of two objects.
The apparent magnitude (m) is the brightness of an object and depends on an object's intrinsic luminosity, its distance, and the extinction reducing its brightness. The absolute magnitude ( M ) describes the intrinsic luminosity emitted by an object and is defined to be equal to the apparent magnitude that the object would have if it were ...
In astronomy, surface brightness (SB) quantifies the apparent brightness or flux density per unit angular area of a spatially extended object such as a galaxy or nebula, or of the night sky background. An object's surface brightness depends on its surface luminosity density, i.e., its luminosity emitted per unit surface area.
In astronomy, a phase curve describes the brightness of a reflecting body as a function of its phase angle (the arc subtended by the observer and the Sun as measured at the body). The brightness usually refers the object's absolute magnitude, which, in turn, is its apparent magnitude at a distance of one astronomical unit from the Earth and Sun.
In contrast, the term brightness in astronomy is generally used to refer to an object's apparent brightness: that is, how bright an object appears to an observer. Apparent brightness depends on both the luminosity of the object and the distance between the object and observer, and also on any absorption of light along the path from object to ...
Calculating the relation between the apparent and actual luminosity of an object requires taking all of these factors into account. The object's actual luminosity is determined using the inverse-square law and the proportions of the object's apparent distance and luminosity distance.
Photographic magnitude (m ph or m p) is a measure of the relative brightness of a star or other astronomical object as imaged on a photographic film emulsion with a camera attached to a telescope. An object's apparent photographic magnitude depends on its intrinsic luminosity , its distance and any extinction of light by interstellar matter ...