Search results
Results From The WOW.Com Content Network
An example of linear motion is an athlete running a 100-meter dash ... The gradient of a line on a displacement time graph represents the velocity. The gradient of ...
The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading ...
Power is the rate with respect to time at which work is done; it is the time derivative of work: =, where P is power, W is work, and t is time. We will now show that the mechanical power generated by a force F on a body moving at the velocity v can be expressed as the product: P = d W d t = F ⋅ v {\displaystyle P={\frac {dW}{dt}}=\mathbf {F ...
The velocity is the time derivative of the displacement: = = ^ + ^. Because the radius of the circle is constant, the radial component of the velocity is zero. The unit vector u ^ R ( t ) {\displaystyle {\hat {\mathbf {u} }}_{R}(t)} has a time-invariant magnitude of unity, so as time varies its tip always lies on a circle of unit radius, with ...
Kinetic energy can be transferred between objects and transformed into other kinds of energy. [10] Kinetic energy may be best understood by examples that demonstrate how it is transformed to and from other forms of energy. For example, a cyclist uses chemical energy provided by food to accelerate a bicycle to a chosen speed.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Mathematically Force is directly proportional to the negative of displacement. Negative sign signifies the restoring nature of the force. (e.g., that of a pendulum). Linear motion – motion that follows a straight linear path, and whose displacement is exactly the same as its trajectory. [Also known as rectilinear motion] Reciprocal motion
The theory underlying the determinants run contrary to that of the 'inverted pendulum' theory with a static stance leg acting as a pendulum that prescribes an arc. [33] [34] [35] The six determinants of gaits and their effects on COM displacement and energy conservation are described below in chronological order: