Search results
Results From The WOW.Com Content Network
According to Planck's distribution law, the spectral energy density (energy per unit volume per unit frequency) at given temperature is given by: [4] [5] (,) = alternatively, the law can be expressed for the spectral radiance of a body for frequency ν at absolute temperature T given as: [6] [7] [8] (,) = where k B is the Boltzmann ...
For an ideal absorber/emitter or black body, the Stefan–Boltzmann law states that the total energy radiated per unit surface area per unit time (also known as the radiant exitance) is directly proportional to the fourth power of the black body's temperature, T: =.
For a black body (a perfect absorber) there is no reflected radiation, and so the spectral radiance is entirely due to emission. In addition, a black body is a diffuse emitter (its emission is independent of direction). Blackbody radiation becomes a visible glow of light if the temperature of the object is high enough. [19]
Emissivity of a body at a given temperature is the ratio of the total emissive power of a body to the total emissive power of a perfectly black body at that temperature. Following Planck's law , the total energy radiated increases with temperature while the peak of the emission spectrum shifts to shorter wavelengths.
Radiance is used to characterize diffuse emission and reflection of electromagnetic radiation, and to quantify emission of neutrinos and other particles. The SI unit of radiance is the watt per steradian per square metre (W·sr −1 ·m −2). It is a directional quantity: the radiance of a surface depends on the direction from which it is ...
A grey body is one where α, ρ and τ are constant for all wavelengths; this term also is used to mean a body for which α is temperature- and wavelength-independent. A white body is one for which all incident radiation is reflected uniformly in all directions: τ = 0, α = 0, and ρ = 1. For a black body, τ = 0, α = 1, and ρ = 0. Planck ...
Spectral radiance Specific intensity L e,Ω,ν [nb 3] watt per steradian per square metre per hertz W⋅sr −1 ⋅m −2 ⋅Hz −1: M⋅T −2: Radiance of a surface per unit frequency or wavelength. The latter is commonly measured in W⋅sr −1 ⋅m −2 ⋅nm −1. This is a directional quantity. This is sometimes also confusingly called ...
Every such black body emits from its surface with a spectral radiance that Kirchhoff labeled I (for specific intensity, the traditional name for spectral radiance). Kirchhoff's postulated spectral radiance I was a universal function, one and the same for all black bodies, only depending on wavelength and temperature.