When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Normal number (computing) - Wikipedia

    en.wikipedia.org/wiki/Normal_number_(computing)

    In computing, a normal number is a non-zero number in a floating-point representation which is within the balanced range supported by a given floating-point format: it is a floating point number that can be represented without leading zeros in its significand. The magnitude of the smallest normal number in a format is given by:

  3. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ 2 × 10 308. The number of normal floating-point numbers in a system (B, P, L, U) where B is the base of the system, P is the precision of the significand (in base B),

  4. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    A floating-point variable can represent a wider range of numbers than a fixed-point variable of the same bit width at the cost of precision. A signed 32-bit integer variable has a maximum value of 2 31 − 1 = 2,147,483,647, whereas an IEEE 754 32-bit base-2 floating-point variable has a maximum value of (2 − 2 −23) × 2 127 ≈ 3.4028235 ...

  5. Minifloat - Wikipedia

    en.wikipedia.org/wiki/Minifloat

    Additionally, they are frequently encountered as a pedagogical tool in computer-science courses to demonstrate the properties and structures of floating-point arithmetic and IEEE 754 numbers. Minifloats with 16 bits are half-precision numbers (opposed to single and double precision ).

  6. Round-off error - Wikipedia

    en.wikipedia.org/wiki/Round-off_error

    A floating-point number system is normalized if the leading digit is always nonzero unless the number is zero. [3] Since the significand is d 0 . d 1 d 2 … d p − 1 {\displaystyle d_{0}.d_{1}d_{2}\ldots d_{p-1}} , the significand of a nonzero number in a normalized system satisfies 1 ≤ significand < β p {\displaystyle 1\leq {\text ...

  7. IEEE 754 - Wikipedia

    en.wikipedia.org/wiki/IEEE_754

    The IEEE Standard for Floating-Point Arithmetic (IEEE 754) is a technical standard for floating-point arithmetic originally established in 1985 by the Institute of Electrical and Electronics Engineers (IEEE). The standard addressed many problems found in the diverse floating-point implementations that made them difficult to use reliably and ...

  8. Normalized number - Wikipedia

    en.wikipedia.org/wiki/Normalized_number

    In many computer systems, binary floating-point numbers are represented internally using this normalized form for their representations; for details, see normal number (computing). Although the point is described as floating, for a normalized floating-point number, its position is fixed, the movement being reflected in the different values of ...

  9. Subnormal number - Wikipedia

    en.wikipedia.org/wiki/Subnormal_number

    The significand (or mantissa) of an IEEE floating-point number is the part of a floating-point number that represents the significant digits. For a positive normalised number, it can be represented as m 0 . m 1 m 2 m 3 ... m p −2 m p −1 (where m represents a significant digit, and p is the precision) with non-zero m 0 .