Search results
Results From The WOW.Com Content Network
Alkenes react with percarboxylic acids and even hydrogen peroxide to yield epoxides: RCH=CH 2 + RCO 3 H → RCHOCH 2 + RCO 2 H. For ethylene, the epoxidation is conducted on a very large scale industrially using oxygen in the presence of silver-based catalysts: C 2 H 4 + 1/ 2 O 2 → C 2 H 4 O. Alkenes react with ozone, leading to the scission ...
However, as is the case with the overall mechanism, the pathway of alkene approach is also debated. [8] One proposed substrate approach pathway - Note: Substrates are perpendicular to the plane of the catalyst. The ease with which Jacobsen's catalyst selectively epoxidizes cis-alkenes has been difficult to replicate with terminal and trans ...
The Julia olefination (also known as the Julia–Lythgoe olefination) is the chemical reaction used in organic chemistry of phenyl sulfones (1) with aldehydes (or ketones) to give alkenes (olefins)(3) after alcohol functionalization and reductive elimination using sodium amalgam or SmI 2.
The zirconium-catalyzed asymmetric carbo-alumination reaction (or ZACA reaction) was developed by Nobel laureate Ei-ichi Negishi. [1] It facilitates the chiral functionalization of alkenes using organoaluminium compounds under the influence of chiral bis-indenylzirconium catalysts (e.g. bearing chiral terpene residues, [2] as in (+)- or (−)-bis[(1-neomenthyl)indenyl]zirconium dichloride [3 ...
The Shi epoxidation is a chemical reaction described as the asymmetric epoxidation of alkenes with oxone (potassium peroxymonosulfate) and a fructose-derived catalyst (1). This reaction is thought to proceed via a dioxirane intermediate, generated from the catalyst ketone by oxone (potassium peroxymonosulfate).
Isomerization from terminal alkene to internal alkenes. The alkenyl succinic anhydrides are prepared with an excess of isoalkene at temperatures >200 °C under nitrogen atmosphere for more than 3 hours; the excess iso-alkene is distilled off at reduced pressure. Synthesis of ASA from maleic anhydride and alkene.
One attractive feature of the Peterson olefination is that it can be used to prepare either cis- or trans-alkenes from the same β-hydroxysilane. Treatment of the β-hydroxysilane with acid will yield one alkene, while treatment of the same β-hydroxysilane with base will yield the alkene of opposite stereochemistry.
Main group elements can also form π-complexes with alkenes and alkynes. The β-diketiminato aluminum(I) complex Al{HC(CMeNAr) 2 } (Ar = 2,6-diisopropylphenyl), which bears an Al-based sp x lone pair, reacts with alkenes and alkynes to give alumina (III) cyclopropanes and alumina (III) cyclopropenes in a process analogous to the formation of π ...