Search results
Results From The WOW.Com Content Network
Reversed-phase liquid chromatography (RP-LC) is a mode of liquid chromatography in which non-polar stationary phase and polar mobile phases are used for the separation of organic compounds. [1] [2] [3] The vast majority of separations and analyses using high-performance liquid chromatography (HPLC) in
Hydrophilic interaction chromatography (or hydrophilic interaction liquid chromatography, HILIC) [1] is a variant of normal phase liquid chromatography that partly overlaps with other chromatographic applications such as ion chromatography and reversed phase liquid chromatography.
A modern self-contained HPLC Schematic representation of an HPLC unit (1) solvent reservoirs, (2) solvent degasser, (3) gradient valve, (4) mixing vessel for delivery of the mobile phase, (5) high-pressure pump, (6) switching valve in "inject position", (6') switching valve in "load position", (7) sample injection loop, (8) pre-column (guard column), (9) analytical column, (10) detector (i.e ...
The main calculation is evaluation of a function of the product D T (D X) of the covariance matrix D T D and the block-vector X that iteratively approximates the desired singular vectors. PCA needs the largest eigenvalues of the covariance matrix, while LOBPCG is typically implemented to calculate the smallest ones.
Fast protein liquid chromatography (FPLC) is a form of liquid chromatography that is often used to analyze or purify mixtures of proteins. As in other forms of chromatography, separation is possible because the different components of a mixture have different affinities for two materials, a moving fluid (the mobile phase) and a porous solid (the stationary phase).
In differential geometry, the four-gradient (or 4-gradient) is the four-vector analogue of the gradient from vector calculus. In special relativity and in quantum mechanics , the four-gradient is used to define the properties and relations between the various physical four-vectors and tensors .
The protein manufacturing cost remains high and there is a growing demand to develop cost efficient and rapid protein purification methods. Understanding the different protein purification methods and optimizing the downstream processing is critical to minimize production costs while maintaining the quality of acceptable standards of homogeneity. [2]
This suggests taking the first basis vector p 0 to be the negative of the gradient of f at x = x 0. The gradient of f equals Ax − b. Starting with an initial guess x 0, this means we take p 0 = b − Ax 0. The other vectors in the basis will be conjugate to the gradient, hence the name conjugate gradient method.