Search results
Results From The WOW.Com Content Network
Farey sunburst of order 6, with 1 interior (red) and 96 boundary (green) points giving an area of 1 + 96 / 2 − 1 = 48 [1]. In geometry, Pick's theorem provides a formula for the area of a simple polygon with integer vertex coordinates, in terms of the number of integer points within it and on its boundary.
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
The perimeter of a stadium is calculated by the formula = (+) where a is the length of the straight sides and r is the radius of the semicircles. With the same parameters, the area of the stadium is A = π r 2 + 2 r a = r ( π r + 2 a ) {\displaystyle A=\pi r^{2}+2ra=r(\pi r+2a)} .
Let P and Q be fixed points in the plane, and let d(P, S) and d(Q, S) denote the Euclidean distances from these points to a third variable point S. Let m and a be arbitrary real numbers. Then the Cartesian oval is the locus of points S satisfying d(P, S) + m d(Q, S) = a.
An example is the linear map that takes any point with coordinates (,) to the point (+,). In this case, the displacement is horizontal by a factor of 2 where the fixed line is the x-axis, and the signed distance is the y-coordinate. Note that points on opposite sides of the reference line are displaced in opposite directions.
The slope field can be defined for the following type of differential equations ′ = (,), which can be interpreted geometrically as giving the slope of the tangent to the graph of the differential equation's solution (integral curve) at each point (x, y) as a function of the point coordinates. [3]
The second moment of area, also known as area moment of inertia, is a geometrical property of an area which reflects how its points are distributed with respect to an arbitrary axis. The unit of dimension of the second moment of area is length to fourth power, L 4, and should not be confused with the mass moment of inertia.
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]