When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Slope - Wikipedia

    en.wikipedia.org/wiki/Slope

    Slope illustrated for y = (3/2)x − 1.Click on to enlarge Slope of a line in coordinates system, from f(x) = −12x + 2 to f(x) = 12x + 2. The slope of a line in the plane containing the x and y axes is generally represented by the letter m, [5] and is defined as the change in the y coordinate divided by the corresponding change in the x coordinate, between two distinct points on the line.

  3. Change of variables - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables

    A very simple example of a useful variable change can be seen in the problem of finding the roots of the sixth-degree polynomial: x 6 − 9 x 3 + 8 = 0. {\displaystyle x^{6}-9x^{3}+8=0.} Sixth-degree polynomial equations are generally impossible to solve in terms of radicals (see Abel–Ruffini theorem ).

  4. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    If the velocity or positions change non-linearly over time, such as in the example shown in the figure, then differentiation provides the correct solution. Differentiation reduces the time-spans used above to be extremely small ( infinitesimal ) and gives a velocity or acceleration at each point on the graph rather than between a start and end ...

  5. Hydraulic jumps in rectangular channels - Wikipedia

    en.wikipedia.org/wiki/Hydraulic_Jumps_in...

    The M-y Diagram for this example is plotted below. To develop the M-y Diagram, we plot the value of M as a function of depth with M on the x-axis and depth on the y-axis since this is more naturally conducive to visualizing the change in momentum with depth.

  6. Calculus of variations - Wikipedia

    en.wikipedia.org/wiki/Calculus_of_Variations

    Calculus of variations is concerned with variations of functionals, which are small changes in the functional's value due to small changes in the function that is its argument. The first variation [ l ] is defined as the linear part of the change in the functional, and the second variation [ m ] is defined as the quadratic part.

  7. Change of variables (PDE) - Wikipedia

    en.wikipedia.org/wiki/Change_of_variables_(PDE)

    If we know that (,) satisfies an equation (like the Black–Scholes equation) we are guaranteed that we can make good use of the equation in the derivation of the equation for a new function (,) defined in terms of the old if we write the old V as a function of the new v and write the new and x as functions of the old t and S.

  8. Fiber product of schemes - Wikipedia

    en.wikipedia.org/wiki/Fiber_product_of_schemes

    For example, the product of affine spaces A m and A n over a field k is the affine space A m+n over k. For a scheme X over a field k and any field extension E of k, the base change X E means the fiber product X × Spec(k) Spec(E). Here X E is a scheme over E. For example, if X is the curve in the projective plane P 2

  9. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    For instance, if f(x, y) = x 2 + y 2 − 1, then the circle is the set of all pairs (x, y) such that f(x, y) = 0. This set is called the zero set of f, and is not the same as the graph of f, which is a paraboloid. The implicit function theorem converts relations such as f(x, y) = 0 into functions.