When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The vector spaces of a tensor product need not be the same, and sometimes the elements of such a more general tensor product are called "tensors". For example, an element of the tensor product space V ⊗ W is a second-order "tensor" in this more general sense, [29] and an order-d tensor may likewise be defined as an element of a tensor product ...

  3. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  4. Tensor (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(machine_learning)

    In machine learning, the term tensor informally refers to two different concepts (i) a way of organizing data and (ii) a multilinear (tensor) transformation. Data may be organized in a multidimensional array (M-way array), informally referred to as a "data tensor"; however, in the strict mathematical sense, a tensor is a multilinear mapping over a set of domain vector spaces to a range vector ...

  5. Array (data type) - Wikipedia

    en.wikipedia.org/wiki/Array_(data_type)

    For example, in the Pascal programming language, the declaration type MyTable = array [1.. 4, 1.. 2] of integer, defines a new array data type called MyTable. The declaration var A: MyTable then defines a variable A of that type, which is an aggregate of eight elements, each being an integer variable identified by two indices.

  6. Tensor field - Wikipedia

    en.wikipedia.org/wiki/Tensor_field

    As a tensor is a generalization of a scalar (a pure number representing a value, for example speed) and a vector (a magnitude and a direction, like velocity), a tensor field is a generalization of a scalar field and a vector field that assigns, respectively, a scalar or vector to each point of space. If a tensor A is defined on a vector fields ...

  7. Tensor (intrinsic definition) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(intrinsic_definition)

    A simple tensor (also called a tensor of rank one, elementary tensor or decomposable tensor [1]) is a tensor that can be written as a product of tensors of the form = where a, b, ..., d are nonzero and in V or V ∗ – that is, if the tensor is nonzero and completely factorizable. Every tensor can be expressed as a sum of simple tensors.

  8. Dyadics - Wikipedia

    en.wikipedia.org/wiki/Dyadics

    If V is a finite-dimensional vector space, a dyadic tensor on V is an elementary tensor in the tensor product of V with its dual space. The tensor product of V and its dual space is isomorphic to the space of linear maps from V to V: a dyadic tensor vf is simply the linear map sending any w in V to f(w)v.

  9. Tensor product of modules - Wikipedia

    en.wikipedia.org/wiki/Tensor_product_of_modules

    In this setup, for example, one can define a tensor field on a smooth manifold M as a (global or local) section of the tensor product (called tensor bundle) () where O is the sheaf of rings of smooth functions on M and the bundles , are viewed as locally free sheaves on M.