Search results
Results From The WOW.Com Content Network
Unit fractions can also be expressed using negative exponents, as in 2 −1, which represents 1/2, and 2 −2, which represents 1/(2 2) or 1/4. A dyadic fraction is a common fraction in which the denominator is a power of two, e.g. 1 / 8 = 1 / 2 3 . In Unicode, precomposed fraction characters are in the Number Forms block.
In mathematics, the infinite series 1 / 2 + 1 / 4 + 1 / 8 + 1 / 16 + ··· is an elementary example of a geometric series that converges absolutely. The sum of the series is 1.
2. Denotes the additive inverse and is read as minus, the negative of, or the opposite of; for example, –2. 3. Also used in place of \ for denoting the set-theoretic complement; see \ in § Set theory. × (multiplication sign) 1. In elementary arithmetic, denotes multiplication, and is read as times; for example, 3 × 2. 2.
Slices of approximately 1/8 of a pizza. A unit fraction is a positive fraction with one as its numerator, 1/ n.It is the multiplicative inverse (reciprocal) of the denominator of the fraction, which must be a positive natural number.
Fractions together with an integer are read as follows: 1 + 1 ⁄ 2 is "one and a half" 6 + 1 ⁄ 4 is "six and a quarter" 7 + 5 ⁄ 8 is "seven and five eighths" A space is placed to mark the boundary between the whole number and the fraction part unless superscripts and subscripts are used; for example: 9 1/2; 9 + 1 ⁄ 2 9 + 1 / 2
The same 1 / μ = 3 + √ 8 (the silver ratio squared) also is observed in the unfolded general continued fractions of both the natural logarithm of 2 and the n th root of 2 (which works for any integer n > 1) if calculated using 2 = 1 + 1.
1 ⁄ 7: 0.142... Vulgar Fraction One Seventh 2150 8528 ⅑ 1 ⁄ 9: 0.111... Vulgar Fraction One Ninth 2151 8529 ⅒ 1 ⁄ 10: 0.1 Vulgar Fraction One Tenth 2152 8530 ⅓ 1 ⁄ 3: 0.333... Vulgar Fraction One Third 2153 8531 ⅔ 2 ⁄ 3: 0.666... Vulgar Fraction Two Thirds 2154 8532 ⅕ 1 ⁄ 5: 0.2 Vulgar Fraction One Fifth 2155 8533 ⅖ 2 ...
If x 2 is the remaining fraction after this step of the greedy expansion, it satisfies the equation P 1 (x 2 + 1 / 2 ) = 0, which can be expanded as P 2 (x 2) = 4x 2 2 + 8x 2 − 1 = 0. Since P 2 (x) < 0 for x = 1 / 9 , and P 2 (x) > 0 for all x > 1 / 8 , the next term in the greedy expansion is 1 / 9 .