When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Comparison of programming languages (array) - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_programming...

    For example, to perform an element by element sum of two arrays, a and b to produce a third c, it is only necessary to write c = a + b In addition to support for vectorized arithmetic and relational operations, these languages also vectorize common mathematical functions such as sine. For example, if x is an array, then y = sin (x)

  3. Comparison of programming languages - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_programming...

    The literature on programming languages contains an abundance of informal claims about their relative expressive power, but there is no framework for formalizing such statements nor for deriving interesting consequences. [52] This table provides two measures of expressiveness from two different sources.

  4. Row- and column-major order - Wikipedia

    en.wikipedia.org/wiki/Row-_and_column-major_order

    For matrices in mathematical notation, the first index indicates the row, and the second indicates the column, e.g., given a matrix , the entry , is in its first row and second column. This convention is carried over to the syntax in programming languages, [ 2 ] although often with indexes starting at 0 instead of 1.

  5. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    The following exposition of the algorithm assumes that all of these matrices have sizes that are powers of two (i.e., ,, ⁡ ()), but this is only conceptually necessary — if the matrices , are not of type , the "missing" rows and columns can be filled with zeros to obtain matrices with sizes of powers of two — though real implementations ...

  6. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Graphs of functions commonly used in the analysis of algorithms, showing the number of operations versus input size for each function. The following tables list the computational complexity of various algorithms for common mathematical operations.

  7. Array programming - Wikipedia

    en.wikipedia.org/wiki/Array_programming

    Both MATLAB and GNU Octave natively support linear algebra operations such as matrix multiplication, matrix inversion, and the numerical solution of system of linear equations, even using the Moore–Penrose pseudoinverse. [7] [8] The Nial example of the inner product of two arrays can be implemented using the native matrix multiplication operator.

  8. Comparison of linear algebra libraries - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_linear...

    C++ template library; binds to optimized BLAS such as the Intel MKL; Includes matrix decompositions, non-linear solvers, and machine learning tooling Eigen: Benoît Jacob C++ 2008 3.4.0 / 08.2021 Free MPL2: Eigen is a C++ template library for linear algebra: matrices, vectors, numerical solvers, and related algorithms. Fastor [5]

  9. Conjugate transpose - Wikipedia

    en.wikipedia.org/wiki/Conjugate_transpose

    Even if is not square, the two matrices and are both Hermitian and in fact positive semi-definite matrices. The conjugate transpose "adjoint" matrix A H {\displaystyle \mathbf {A} ^{\mathrm {H} }} should not be confused with the adjugate , adj ⁡ ( A ) {\displaystyle \operatorname {adj} (\mathbf {A} )} , which is also sometimes called adjoint .